Bayesian Inference on the Generalized Shape-Scale Family based on Kernel Prior

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In statistical inference, Bayesian inference is widely used in estimating the distribution parameters despite of it is subjective to prior information other than data that produces undesirable conclusions. Thus, the main objective of this paper to apply the Bayes theorem to the conditional distribution of pivotal functions using kernel priors for those pivotal functions. The conditional inference has been used for estimating the generalized shape-scale family parameters, based on a generalized progressive hybrid-censoring scheme, and compared to Bayesian estimates, via Monte Carlo simulations. The simulation results indicated that conditional inference is highly efficient and provides better estimates than Bayesian inference using different loss functions. Finally, two real data sets have been given to demonstrate the efficiency of the proposed methods.

Publisher

Research Square Platform LLC

Reference30 articles.

1. Reliability estimation based on general progressive censored data from the Weibull model: Comparison between Bayesian and Classical approaches;Abd-Elrahman AM;METRON- International Journal of Statistics. 2007; LX

2. Bhaumik, D.K., Kapur, K., Gibbons, R.D. Testing Parameters of a Gamma Distribution for Small Samples, Technometrics. 2009; 51: 326–334.

3. Calabria, R., Pulcini, G. An engineering approach to Bayes estimation for the Weibull distribution. Microelectron, Reliability. 1994; 34: 789–802.

4. Bayes prediction of number of failures in Weibull samples;Calabria R;Commun. Statist. -Theory Meth.,1995

5. Point estimation under asymmetric loss functions for left-truncated exponential samples;Calabria R;Commun. Statist. -Theory Meth.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3