Surface triggered stabilization of metastable charge-ordered phase in SrTiO3

Author:

Eom Kitae1,Chung Bongwook1ORCID,Oh Sehoon1,Zhou Hua2ORCID,Seo Jinsol3,Oh Sang Ho3ORCID,Jang Jinhyuk4ORCID,Choi Si-Young5ORCID,Choi Minsu1,Seo Ilwan6,Lee Yun Sang7,Rzchowski Mark8,Eom Chang-Beom8,Lee Jaichan1ORCID

Affiliation:

1. Sungkyunkwan University

2. Argonne National Laboratory

3. Korea Institute of Energy Technology (KENTECH)

4. Pohang University of Science and Technology

5. Pohang University of Science and Technology (POSTECH)

6. Soongsil University

7. Soonsil University

8. University of Wisconsin-Madison

Abstract

Abstract Charge ordering (CO), periodic modulation of electron density and lattice distortion, has been the fundamental subject in condensed matter physics, as well as a potential platform to induce novel functional properties. The charge-ordered phase is known to occur in a doped system of high d-electron occupancy but not of low occupancy. Here, we report that the charge-ordered phase is realized in electron-doped (100) SrTiO3 epitaxial thin films that have the lowest d-electron occupancy i.e., d1-d0. Theoretical calculation predicts the presence of a metastable CO state at the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion prefers the electron-lattice coupling for the charge-ordered state and triggers the stabilization for the CO phase from correlated metal, which extends up to six unit cells from the top surface to the interior. Our approach will provide an insight on the way to stabilize a new phase of matter that extends CO phase to the lowest electron occupancy, covering a whole range of 3d transition metal oxide.

Publisher

Research Square Platform LLC

Reference47 articles.

1. Orbital Physics in Transition-Metal Oxides;Tokura Y;Science,2004

2. Light-Induced Superconductivity in a Stripe-Ordered Cuprate;Fausti D;Science,2011

3. Charge ordering in superconducting copper oxides;Frano A;J. Phys.: Condens. Matter,2020

4. Charge-ordering in oxides;Coey M;Nature,2004

5. Colossal magnetoresistance;Ramirez AP;J. Phys.: Condens. Matter,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3