Statistical Inference on the Three Parameters Burr-XII Distribution Using the Runge-Kutta Method

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In parameter estimation techniques, there are many methods for estimating the distribution parameters in life data analysis. However, most of them are less efficient than the Bayes method based on the informative prior. Thus, the main objective of this study is to present an optimal estimation method using the Runge-Kutta technique for estimating the three parameters of the Burr type-XII distribution. The Runge-Kutta estimates are compared with the Bayesian estimates based on the informative gamma and kernel priors via an extensive Monte Carlo simulation. The simulation results indicated that the Runge-Kutta method is highly favorable, which provides better estimates and outperforms the Bayes method based on the generalized progressive hybrid censoring scheme. Finally, two real datasets are presented to illustrate the efficiency of the proposed methods.

Publisher

Research Square Platform LLC

Reference29 articles.

1. Kernel Inference on the Generalized Gamma Distribution based on Generalized Order Statistics;Ahsanullah M;Journal of Statistical Theory and Applications,2013

2. Testing Parameters of a Gamma Distribution for Small Samples;Bhaumik DK;Technimetrics,2009

3. "On a general system of distributions III. The sample range";Burr Irving W;Journal of the American Statistical Association,1968

4. On a general system of distributions. I. Its curve- shaped characteristics. II. The sample median";Burr Irving W;Journal of the American Statistical Association,1968

5. An estimation of the entropy for a Rayleigh distribution based on doubly generalized Type-II hybrid censored samples;Cho Y;Entropy,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3