Estimation for the Weibull Extension Model Parameters based on Runge-Kutta Method

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In parameter estimation techniques, the maximum likelihood estimation method is the most common technique that is broadly used in social science and psychology, despite the fact that it is usually biased when the sample sizes are small or the data are heavily censored. Thus, the main objective of this paper is to introduce a numerical iteration technique, which is the Runge-Kutta method for finding the parameter estimators. This method has been applied for deriving the estimators for the Weibull extension model parameters and compared with the maximum likelihood and Bayes methods via Monte Carlo simulations. The results are strongly favorable to the Runge-Kutta method, which provides better estimates and outperforms the Bayes and maximum likelihood methods. Finally, numerical examples are given to demonstrate the efficiency of the proposed methods.

Publisher

Research Square Platform LLC

Reference23 articles.

1. On partial orderings and testing of new better than renewal used classes;Abouammoh AM;Reliab. Eng. Syst. Safety,1994

2. Estimation for the Parameters of the Weibull Extension Model Based on Generalized Order Statistics;Abu El S;Int. J. Contemp. Math. Sciences,2011

3. Testing Parameters of a Gamma Distribution for Small Samples, Technometrics;Bhaumik DK,2009

4. A new two-parameter lifetime distribution with bathtub-shape or increasing failure rate function;Chen Z;Statistics & Probability Letters,2000

5. An estimation of the entropy for a Rayleigh distribution based on doubly generalized Type-II hybrid censored samples, Entropy;Cho Y,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3