Assess the impacts of climate change on the patterns of rainfall, temperature, and streamflow in the Abelti Watershed of Southwestern Ethiopia

Author:

ALEHU BEYENE AKIRSO1ORCID,Bitana Seble Gizachew2

Affiliation:

1. Dilla University

2. DU: Dilla University

Abstract

Abstract Changes in rainfall, temperature and streamflow (stf) will be one of the most critical factors determining the overall impact of climate change (CC). Thus, in this study we evaluated rainfall(rf), temperature, and stf pattern under changing climate in the Abelti-Watershed (a sub-watershed of upper Omo Gibe basin), Ethiopia. The Representative Concentration Pathway (RCP) scenarios of Hadley Global Environment Model 2-Earth System (HadGEM2-ES) under Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa database selected for the near (2011-2040), med (2041-2070), and end (2071-2100) periods. Hydrologic Engineering Centers-Hydrologic Modelling System (HEC-HMS) model applied for stf projection. XL-STAT conducts average annual and seasonal rf, minimum and maximum temperature (tmin&tmax), and stf trend tests. Mean seasonal and annual rf and stf variation evaluation taken using the coefficient of variation (CV). Finally, the impact of CC analysis is taken based on the baseline period. The results revealed that the climate model projection is successful for given weather stations. HEC-HMS model showed a satisfactory performance during calibration (R2=0.82) and validation (R2=0.78). The MK trend of tmin&tmax show significantly increasing; whereas rf and stf show insignificantly decreasing except under RCP8.5. The rf and stf CV analysis indicated less, moderate, and high in the study area. And the future long year average annual rf increased by -3.6%, -1.9% and -7.7%; temperature +1.15%, +2.2% and +4.2%; and stf -2.9%, -0.05% and -8.5% under RCP2.6, RCP4.5 and RCP8.5 respectively. Thus, the decrement in rf and the increment in temperature lead to more evapotranspiration and affect the stf negatively. In conclusion, stf in the Abelti-watershed could significantly decline with adverse consequences for water supplies, agriculture, and ecosystem health for the future. Therefore, this study may contribute to the planning and implementation of sustainable resources development and management strategies and help to mitigate the consequences of CC.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3