Evaluating the habitat suitability modeling of Aceria alhagi and Alhagi maurorum in their native range using machine learning techniques

Author:

Dastres Emran1,Bijani Farzad2,Naderi Ruhollah1,Zamani Afshin1,Edalat Mohsen1

Affiliation:

1. Shiraz University

2. Rafsanjan University

Abstract

Abstract Spatial locational modeling techniques are increasingly used in species distribution modeling. However, the implemented techniques differ in their modeling performance. In this study, we tested the predictive accuracy of three algorithms, namely "random forest (RF)," "support vector machine (SVM)," and "boosted regression trees (BRT)" to prepare habitat suitability mapping of an invasive species, Alhagi maurorum, and its potential biological control agent, Aceria alhagi. Location of this study was in Fars Province, southwest of Iran. The spatial distributions of the species were forecasted using GPS devices and GIS software. The probability values of occurrence were then checked using three algorithms. The predictive accuracy of the machine learning (ML) techniques was assessed by computing the “area under the curve (AUC)” of the “receiver-operating characteristic” plot. When the Aceria alhagi was modeled, the AUC values of RF, BRT and SVM were 0.89, 0.81, and 0.79, respectively. However, in habitat suitability models (HSMs) of Alhagi maurorum the AUC values of RF, BRT and SVM were 0.89, 0.80, and 0.73, respectively. The RF model provided significantly more accurate predictions than other algorithms. The importance of factors on the growth and development of Alhagi maurorum and Aceria alhagi was also determined using the partial least squares (PLS) algorithm, and the most crucial factors were the road and slope. Habitat suitability modeling based on algorithms may significantly increase the accuracy of species distribution forecasts, and thus it shows considerable promise for different conservation biological and biogeographical applications.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3