Abstract
Abstract
Spatial locational modeling techniques are increasingly used in species distribution modeling. However, the implemented techniques differ in their modeling performance. In this study, we tested the predictive accuracy of three algorithms, namely "random forest (RF)," "support vector machine (SVM)," and "boosted regression trees (BRT)" to prepare habitat suitability mapping of an invasive species, Alhagi maurorum, and its potential biological control agent, Aceria alhagi. Location of this study was in Fars Province, southwest of Iran. The spatial distributions of the species were forecasted using GPS devices and GIS software. The probability values of occurrence were then checked using three algorithms. The predictive accuracy of the machine learning (ML) techniques was assessed by computing the “area under the curve (AUC)” of the “receiver-operating characteristic” plot. When the Aceria alhagi was modeled, the AUC values of RF, BRT and SVM were 0.89, 0.81, and 0.79, respectively. However, in habitat suitability models (HSMs) of Alhagi maurorum the AUC values of RF, BRT and SVM were 0.89, 0.80, and 0.73, respectively. The RF model provided significantly more accurate predictions than other algorithms. The importance of factors on the growth and development of Alhagi maurorum and Aceria alhagi was also determined using the partial least squares (PLS) algorithm, and the most crucial factors were the road and slope. Habitat suitability modeling based on algorithms may significantly increase the accuracy of species distribution forecasts, and thus it shows considerable promise for different conservation biological and biogeographical applications.
Publisher
Research Square Platform LLC