Artificial Neural Network to optimize energy solutions of office buildings in subtropical monsoon climate

Author:

Ashraf Jawad1

Affiliation:

1. Khulna University of Engineering and Technology

Abstract

Abstract

Reducing a building's energy use has many real-world applications. An early-stage design could have a quantitative foundation for energy-saving designs if energy consumption could be predicted quickly and accurately. The main issue that designers are currently dealing with is the incompatibility of building modelling and energy simulation software. In order to realize the flexibility of building energy systems, accurate and timely thermal load prediction for buildings is essential. Here, a model of an artificial neural network (ANN) is developed, for forecasting an office building's load demand and energy usage. A case study building was selected and analysed via Autodesk Revit and Green Building Studio. For the modelling of ANN, 438 simulated data samples were created based on different design parameters considering different window, wall and roof materials, and meteorological conditions considering dew point, dry bulb, wet bulb temperature and relative humidity of seven major cities in Bangladesh. The findings show that the artificial neural network (ANN) model has a high degree of precision in predicting annual electricity use and annual load demand. The coefficient of variation of the root mean squared errors corresponding to the predictions of load demand and electricity consumption is 0.132% and 0.105%, respectively. The model fits the data well, as evidenced by the R2 values of 0.99189 and 0.99505 for the load demand and electricity consumption predictions, respectively. The optimization results can subsequently lower the electricity consumption by 21.49%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3