Uncertainty measurement for complex event prediction in safety-critical systems

Author:

Peixoto Maria J. P.1,Azim Akramul1

Affiliation:

1. Ontario Tech University

Abstract

Abstract Complex events originate from other primitive events combined according to defined patterns and rules. Instead of using specialists' manual work to compose the model rules, we use machine learning (ML) to self-define these patterns and regulations based on incoming input data to produce the desired complex event. Complex events processing (CEP) uncertainty is critical for embedded and safety-critical systems. This paper exemplifies how we can measure uncertainty for the perception and prediction of events, encompassing embedded systems that can also be critical to safety. Then, we propose an approach (ML\_CP) incorporating ML and sensitivity analysis that verifies how the output varies according to each input parameter. Furthermore, our model also measures the uncertainty associated with the predicted complex event. Therefore, we use conformal prediction to build prediction intervals, as the model itself has uncertainties, and the data has noise. Also, we tested our approach with classification (binary and multi-level) and regression problems test cases. Finally, we present and discuss our results, which are very promising within our field of research and work.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3