Intelligent Intrusion Detection System Using Log Cluster Knowledge Inference Bayes in Complex Event Processing

Author:

S Sandosh1,R Padmanaban2,R Kaviarasan3,M Azhagiri4

Affiliation:

1. Vellore Institute of Technology University

2. Vel Tech Dr. RR & Dr. SR Technical University

3. RGM College of Engineering & Technology,

4. SRM Institute of Science and Technology

Abstract

Abstract Intrusion Detection Systems (IDS) are critical components in a secure network environment, permitting for initial discovery of malicious actions along with attacks. By means of using the data provided by IDS, it is probable to relate proper countermeasures and to alleviate attacks that extremely determine the security of a network. Widespread research was done in the field of IDS design to construct highly scalable IDS without compromising efficiency and security. The purpose of the proposed work is to develop Intelligent IDS using Log Cluster Knowledge Inference Bayes (IIDS-LCKIB) in Complex Event Processing (CEP) Environment. IIDS-LCKIB is used to examine the network traffic data effectivelyIIDS-LCKIB provide the better CEP Environment. Further, it endeavours to decrease the rate of False Positive for the solicitation of network intrusion systems in the real-world and to focus on security along with scalability in Network traffic data. In addition, it tries to test and estimate the performance using New Mathematical IIDS-LCKIB in CEP Environment. The parameters simulation is tested in Java/J2EE software.

Publisher

Research Square Platform LLC

Reference25 articles.

1. Beal, V. (2005). Intrusion detection (IDS) and prevention (IPS) systems.

2. Bace, R., & Mell, P. (2001). NIST special publication on intrusion detection systems. BOOZ-ALLEN AND HAMILTON INC MCLEAN VA.

3. Scalable IDS System: Exploring the Design Space.

4. Pei, J., Upadhyaya, S. J., Farooq, F., & Govindaraju, V. (2004, March). Data mining for intrusion detection: techniques, applications, and systems. In null (p. 877). IEEE.

5. Debar, H., Dacier, M., & Wespi, A. (2000, July). A revised taxonomy for intrusion-detection systems. In Annales des télécommunications (Vol. 55, No. 7–8, pp. 361–378). Springer-Verlag.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3