Computer Analysis of the Structure of Ag Nanoparticles Obtained by Vacuum- Thermal Synthesis

Author:

Gafner Yury1,Ryzhkova Darya1,Gafner Svetlana1,Redel Larisa1,Poletaev Gennady1

Affiliation:

1. Katanov Khakass State University

Abstract

Abstract

One of the ways to create plasmonic nanoparticles is through a physical method of synthesizing by thermal evaporation in a vacuum, which was chosen for analysis through computer modeling. Experimental data on the initial and annealed silver nanoparticles obtained in this manner were studied. It was found that small Ag nanoparticles (D < 3.5 nm) exhibited nearly ideal FCC structure, while larger nanoparticles unexpectedly showed predominantly icosahedral or decahedral modifications. To assess the mechanisms behind these experimental results, a study on the stability of Ag nanocluster structures with diameters D = 2.0–10.0 nm was conducted using molecular dynamics. Based on computer analysis of synthesis processes, subsequent cooling of Ag nanoparticles, and their thermal annealing, it was demonstrated that the theoretical discrepancy in the structure of experimentally obtained nanoparticles could only be explained by significant deformation of small Ag nanoparticles occurring during their deposition on a substrate in a liquid state. Possible ways to control the structure of Ag nanoparticles were identified. The regularities identified through computer modeling can be utilized in the preparation of Ag nanoparticles using physical synthesis methods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3