Identifying important microbial and genetic biomarkers for differentiating right- versus left-sided colorectal cancer using random forest models

Author:

Kolisnik Tyler1,Sulit Arielle Kae1,Schmeier Sebastian1,Frizelle Frank2,Purcell Rachel2,Smith Adam1,Silander Olin1

Affiliation:

1. Massey University

2. University of Otago

Abstract

Abstract Background: Colorectal cancer (CRC) is a heterogeneous disease, with subtypes that have different clinical behaviours and subsequent prognoses. There is a growing body of evidence suggesting that right-sided colorectal cancer (RCC) and left-sided colorectal cancer (LCC) also differ in treatment success and patient outcomes. Biomarkers that differentiate between RCC and LCC are not well-established. Here, we apply random forest (RF) machine learning methods to identify genomic or microbial biomarkers that differentiate RCC and LCC. Methods: RNA-seq expression data for 58,677 coding and non-coding human genes and count data for 28,557 human unmapped reads were obtained from 308 patient CRC tumour samples. We created three RF models for datasets of human genes-only, microbes-only, and genes-and-microbes combined. We used a permutation test to identify features of significant importance. Finally, we used differential expression (DE) and paired Wilcoxon-rank sum tests to associate features with a particular side. Results: RF model accuracy scores were 90%, 70%, and 87% with area under the curve values (AUC) of 0.9, 0.76, and 0.89 for the human genomic, microbial, and combined feature sets, respectively. 15 features were identified as significant in the model of genes-only, 54 microbes in the model of microbes-only, and 28 genes and 18 microbes in the model with genes-and-microbes combined. PRAC1 expression was the most important feature for differentiating RCC and LCC in the genes-only model, with HOXB13, SPAG16, HOXC4, and RNLS also playing a role. Ruminococcus gnavus and Clostridium acetireducens were the most important in the microbial-only model. MYOM3, HOXC4, Coprococcus eutactus, PRAC1, lncRNA AC012531.25, Ruminococcus gnavus, RNLS, HOXC6, SPAG16 and Fusobacterium nucleatum were most important in the combined model. Conclusions: Many of the identified genes and microbes among all models have previously established associations with CRC. However, the ability of RF models to account for inter-feature relationships within the underlying decision trees may yield a more sensitive and biologically interconnected set of genomic and microbial biomarkers.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3