Dummy Variable Regression and Artificial Neural Networks for Maize Grain Yields Prediction in Push-Pull Systems

Author:

Guera Ouorou Ganni Mariel1,Castrejón-Ayala Federico2,Robledo Norma2,Jiménez-Pérez Alfredo2,Salazar-Marcial Lilia2

Affiliation:

1. International Maize and Wheat Improvement Center

2. Instituto Politécnico Nacional

Abstract

Abstract Crop yield prediction is essential for sustainable production planning. In agroecological systems, the traditional linear or non-linear regression models used for this purpose present limitations and robustness problems due to the number of variables generated by the complexity of these systems. Therefore, the present study was carried out with the objectives of 1) fitting multiple linear regression models with dummy variables using the Ordinary Least Squares method (OLS); 2) parameterizing and training Artificial Neural Networks (ANNs) with the backpropagation algorithm; and 3) comparing the performance of both approaches in maize yield prediction in push-pull systems established in Yautepec, Morelos, Mexico. In both modeling approaches, maize grain yield predictive variables were: edaphoclimatic (soil temperature and moisture), phytosanitary (incidence and severity of Spodoptera frugiperda), morphological (leaf area index), and categorical (Blocks, Management Systems) variables. The ANN of architecture MLP 18-13-1 (r = 0.95; RMSE = 12.19%), with hyperbolic tangent activation function in the hidden layer and linear function in the output layer, generated consistent and more accurate predictions than those obtained with the regression equation with dummy variables (r = 0.87; R2 = 0.75; RMSE = 20.38%).

Publisher

Research Square Platform LLC

Reference43 articles.

1. State-of-the-art in Artificial Neural Network Applications: A Survey;Abiodun OI;Heliyon,2018

2. Estimating soybean yields with artificial neural networks;Alves GR;Acta Sci. Agron.,2018

3. Development of a neural network for soybean rust epidemics;Batchelor WD;Trans ASAE,1997

4. Charles-Edwards, D.A. Physiological determinants of crop growth. (Academic Press Inc., 1982).

5. Climate-Data. Clima: Morelos, México. https://es.climate-data.org/ (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3