Arabidopsis SDG proteins mediate Polycomb removal and transcription-coupled H3K36 methylation for gene activation
Author:
Affiliation:
1. Nara Institute of Science and Technology
2. Tokyo Institute of Technology
3. The University of Tokyo
4. Chubu University
5. The University of Tokyo Graduate School of Science
6. NAIST
Abstract
Polycomb Repressive Complex 2 (PRC2) recognizes Polycomb response elements (PREs) and catalyzes trimethylation of histone H3 on lysine 27 (H3K27me3) for gene silencing. This silencing is counteracted by H3K36 methylation for epigenetic activation of gene expression. Here, we show that the Arabidopsis thaliana H3K36 methyltransferases SET DOMAIN-CONTAINING PROTEIN 7 (SDG7) and SDG8 antagonize PRC2-mediated silencing and establish H3K36 methylation patterns with the general transcription machinery. The sdg7 sdg8 double mutant shows developmental defects and lower H3K36me2 and H3K36me3 levels. SDG7 preferentially binds near PREs, but SDG8 is recruited to H3K36 methylation peaks. The sdg7 sdg8 phenotypes are partially rescued by loss of Polycomb function. SDG7 overlaps with PRC2 and its recruiters on chromatin and evicts them from shared target genes when conditionally induced. SDG8 and RNA Polymerase II associate at SDG- and RNA POLYMERASE II ASSOCIATED FACTOR 1 complex-regulated targets for H3K36 methylation and transcription. These results suggest that SDG proteins evict PRC2 from PREs to prevent H3K27me3 deposition and activate target genes via transcription-coupled H3K36 methylation.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Histone methylation in higher plants;Liu C;Annu Rev Plant Biol.,2010
2. Tug of war: adding and removing histone lysine methylation in Arabidopsis;Xiao J;Curr Opin Plant Biol.,2016
3. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC;Yang H;Curr Biol.,2014
4. The age of multiplexity: recruitment and interactions of Polycomb complexes in plants;Förderer A;Curr. Opin. Plant Biol.,2016
5. Polycomb repression in the regulation of growth and development in Arabidopsis;Xiao J;Curr. Opin. Plant Biol.,2015
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3