Water Sorption on Coal: Effects of Oxygen Containing Function Groups and Pore Structure 

Author:

Liu Ang1,Liu Shimin2ORCID,Liu Peng3,Wang Kai4

Affiliation:

1. Penn State: The Pennsylvania State University

2. Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA

3. Chongqing University

4. China University of Mining and Technology - Beijing Campus

Abstract

Abstract Coal-water interactions has profound influences on gas extraction from coal and coal utilization. Experimental measurements on three coals using X-ray photoelectron spectroscopy (XPS), low-temperature nitrogen adsorption and dynamic water vapor sorption (DVS) were conducted. A mechanism-based isotherm model was proposed to estimate the water vapor uptake at various relative humidities, which was well validated with the DVS results. The validated isotherm model of sorption is further used to derive the isosteric heat of water vapor sorption. The pore specific surface area of coal is not the determining parameter that controls water vapor sorption at least during the primary adsorption stage. Oxygen containing degree dominates the primary adsorption, and togethering with the cumulative pore volume determine the secondary adsorption. Higher temperature has limited effects on primary adsorption process. The isosteric heat of water adsorption decreases as water vapor uptake increases, which was found to be close to the latent heat of bulk water condensation at higher relative humidity. The results confirmed that the primary adsorption is controlled by the stronger bonding energy while the interaction energy between water molecules during secondary adsorption stage is relatively weak. However, the thermodynamics of coal-water interactions are complicated since internal bonding interactions within the coal are disrupted at the same time as new bonding interactions take place with the water molecules. Coal has a shrinkage/swelling colloidal structure with moisture loss/gain and it exhibits collapse behavior with some collapses irreversible as a function of relative humidity, which plays a significant role in determining moisture retention.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3