Experimental Investigation of Microparticle Focusing in SiO2 Nanofluids Inside Curvilinear Microchannels

Author:

Nikdoost Arsalan1,Rezai Pouya1

Affiliation:

1. York University

Abstract

Abstract Curvilinear microchannels have enabled high throughput sized-based separation and manipulation of microparticles. Real life applications usually deal with fluid’s non-Newtonian behavior, where particles dynamics are altered compared to Newtonian mediums. Despite multiple reports on particle manipulation in shear-thinning fluids, no fundamental experimental investigation has been reported on microparticle focusing behavior inside shear-thickening fluids such as metallic oxide nanofluids in water (e.g., SiO2-water). These nanofluids pose unique thermal characteristics and exhibit a drastic increase in viscosity as the shear rate rises in the microchannel. Here, we investigate the particle focusing behavior of co-flows of SiO2 nanofluids inside curved microchannels with various channel widths and radii of curvature. We also report on the effect of nanofluid concentration, fluid axial velocity, and the particle size on particle migration. We observed a behavioral change in particle migration in SiO2 nanofluids, where the shear-dependent effect could enhance the particle focusing at lower flow rates. Moreover, the dominance of Dean drag at higher axial velocities would dominate the particle migration and transfer them towards two focusing peaks close to the sidewalls. A thorough investigation of particle behavior in nanofluids inside curved microchannels could enable future applications in heat exchangers, solar energy collectors, and nanoplastic detection.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3