Preparation and performance of novel flavonoid phenols-based biomass-modified phenol formaldehyde resins

Author:

Qin Yuan1,Meng Fuliang2,Xu Chunyu3,Hu Zhenguo1,Zhang Yimiao1,Jia Yufei1,Li Songjun3,Yuan Xinhua1

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University

2. Hangmo New Materials Group Co., Ltd.

3. Research School of Polymeric Materials, Jiangsu University

Abstract

Abstract Low toxicity, environmentally friendly and sustainable bio-based phenol-formaldehyde (PF) resins are the primary factors and health goals that researchers need to consider when modifying PF resins. Two novel biomass-modified PF resins were synthesized using two flavonoid phenols of daidzein and naringenin with rigid backbone structures. The results show that compared with ordinary PF, the introduction of daidzein and naringenin during the synthesis of N-PF and D-PF can delay the curing reaction and results in higher curing peak temperatures. The appropriate substitution rate of daidzein and naringenin can improve the crosslinking degree, resulting in N-PF and D-PF with higher thermal stability, ablation resistance and mechanical properties. The highest carbon yield YC800 for N-PF is 59.81% (56.85%for PF-1), and the highest YC800 for D-PF is 64.39% (PF-2 with 58.15%). The maximum tensile strength and flexural strengths of N-PF are respective 33.86 MPa and 110.42 MPa (28.77 and 79.89 MPa for PF-1), and the maximum tensile strength and flexural strengths of D-PF are respective 35.61 MPa and 103.17 MPa (24.48 and 55.79 MPa for PF-2). The D-PF and N-PF resins modified and enhanced by daidzein and naringenin have lower friction coefficient and more excellent wear resistance than pure PF.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3