A Multi-level Multi-attention Mechanism Millimeter-Wave Radar and Camera Fusion Method

Author:

Miao Zehua1,Li Yinbei2,Wu Zizhuo1,Yang Jiaqiang2,Ma Yuliang1

Affiliation:

1. Hangzhou Dianzi University

2. Zhejiang University

Abstract

Abstract

In the field of autonomous driving, a commonly employed method to enhance detection accuracy and robustness is the fusion of multi-sensor perception. The fusion of millimeter-wave radar and camera can effectively complement each other, providing sufficient semantic information while ensuring robustness against varying illumination and weather conditions, at a lower cost. In this paper, we focus on the fusion of millimeter-wave radar point cloud features and image features, proposing a multi-level multi-attention feature-level fusion method. By improving the DLA34 backbone network to expand the model's receptive field, we fuse point cloud features at multiple levels with image features and utilize an improved feature pyramid to handle features of both modalities, ensuring good cross-channel information capture capability. Our model leverages the advantages of multi-level multi-attention, achieving an accuracy of 34.3% in the challenging nuScenes dataset, demonstrating promising performance.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3