Affiliation:
1. University of Pittsburgh
2. University of Pittsburgh, UPMC Magee-Womens Hospital
3. Stanford University
4. Cedars-Sinai Medical Center
5. Emory University
Abstract
Abstract
Introduction: Strategies to achieve efficiency in non-operating room locations have been described, but emergencies and competing priorities in a birth unit can make setting optimal staffing and operation benchmarks challenging. This study used Queuing Theory Analysis (QTA) to identify optimal birth center staffing and operating room (OR) resources using real-world data.
Methods: Data from a Level 4 Maternity Center (9,626 births/year, cesarean delivery (CD) rate 32%) were abstracted for all labor and delivery OR activity from July 2019 - June 2020. QTA has two variables: Mean Arrival Rate, λ and Mean Service Rate µ. QTA formulas computed probabilities: P0 = 1-(λ/ µ) and Pn = P0 (λ/µ)n where n = number of patients. P0…n is the probability there are zero patients in the queue at a given time. Multiphase multichannel analysis was used to gain insights on optimal staff and space utilization assuming a priori safety parameters (i.e., 30 min decision to incision in unscheduled CD; ≤5 min for emergent CD; no greater than 8 hours for nil per os time). To achieve these safety targets, a <0.5% probability that a patient would need to wait was assumed.
Results: There were 4,017 total OR activities and 3,092 CD in the study period. Arrival rate λ was 0.45 (patients per hour) at peak hours 07:00-19:00 while λ was 0.34 over all 24 hours. The service rate per OR team (µ) was 0.87 (patients per hour) regardless of peak or overall hours. The number of server teams (s) dedicated to OR activity was varied between two and five. Over 24 hours, the probability of no patients in the system was P0 = 0.61, while the probability of 1 patient in the system was P1 = 0.23, and the probability of 2 or more patients in the system was P≥2 = 0.05 (P3 = 0.006). However, between peak hours 07:00-19:00, λ = 0.45, µ = 0.87, s = 3, P0 = 0.48; P1 = 0.25; and P≥2 = 0.07 (P3 = 0.01, P4 = 0.002, P5 = 0.0003).
Conclusion: QTA is a useful tool to inform birth center OR efficiency while upholding assumed safety standards and factoring peaks and troughs of daily activity. Our findings suggest QTA is feasible to guide staffing for maternity centers of all volumes through varying model parameters. QTA can inform individual hospital-level decisions in setting staffing and space requirements to achieve safe and efficient maternity perioperative care.
Publisher
Research Square Platform LLC
Reference17 articles.
1. Strategies for Improved Hospital Response to Mass Casualty Incidents;TariVerdi M;Disaster Med Public Health Prep,2018
2. National Center for Health Statistics. : “Infant Mortality.” DEATH RATES AMONG INFANTS BY RACE AND HISPANIC ORIGIN OF MOTHER AND METROPOLITAN STATUS, 2017–2018, 2019
3. Anesthesia and sedation outside of the operating room;Youn AM;Korean J Anesthesiol,2015
4. Could we employ the queueing theory to improve efficiency during future mass causality incidents?;Lin CC;Scand J Trauma Resusc Emerg Med,2019
5. Planning and scheduling of semi-urgent surgeries;Zonderland ME;Health Care Manag Sci,2010