Hypoxia-induced TPC2 transcription and glycosylation aggravates pulmonary arterial hypertension by blocking autophagy flux

Author:

li chao1,li cheng1,Jiang YuFei1,Liu MoFei1,Yang ChengYi1,Lu JiaXin1,Jiang YongLiang1

Affiliation:

1. Hunan Provincial People's Hospital(The first-affiliated hospital of Hunan normal university)

Abstract

Abstract Background Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development. Methods We established an experimental PAH rat model via monocrotaline administration. Human and rat pulmonary arterial smooth muscle cells (PASMCs) were treated hypoxia as in vitro cell PAH models. The thickness of pulmonary arterial wall and obstructive arteriopathy in rats were examined. Autophagy was detected through TEM, lysosomal pH and Ca2+ measurement and mRFP-GFP-LC3 transfection. The expression of α-SMA, LC3, p62, TPC2, HIF1α and STT3B were analyzed by qRT-PCR, western blot or IHC staining. The binding of HIF1α to TPC2 promoter was determined by ChIP-qPCR and EMSA assays. TPC2 glycosylation was evaluated by western blot. Transwell assay was applied to analyze cell migration. Results TPC2 expression was promoted and autophagy was inhibited in PAH rats and hypoxia-treated PASMCs. HIF1α directly bound to the promoter of TPC2, thus transcriptionally activating its expression in PAH rats and hypoxic PASMCs. Knockdown of TPC2 facilitated autophagic flux and repressed PASMC migration. STT3B enhanced TPC2 glycosylation in hypoxic PASMCs. Furthermore, Overexpression of TPC2 suppressed autophagic flux and promoted PASMC migration, but these effects were abrogated by STT3B knockdown or PNGase F, an eraser of N-linked glycans. Suppression of TPC2 enhanced autophagy and alleviated PAH in vivo. Conclusion HIF1α-induced TPC2 transcription and subsequent STT3B-dependent TPC2 glycosylation inhibit autophagic flux and aggravate PAH. Our study suggests TCP2 as a potential therapeutic target for PAH.

Publisher

Research Square Platform LLC

Reference50 articles.

1. Pulmonary arterial hypertension;Farber HW;The New England journal of medicine,2004

2. Pulmonary arterial hypertension: pathogenesis and clinical management;Thenappan T;Bmj,2018

3. Pulmonary arterial hypertension: the burden of disease and impact on quality of life;Delcroix M;European respiratory review: an official journal of the European Respiratory Society,2015

4. Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review;Ruopp NF;Jama,2022

5. Targeting Two-Pore Channels: Current Progress and Future Challenges;Jin X;Trends in pharmacological sciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3