CTA-Net: A Gaze Estimation network based on Dual Feature Aggregation and Attention Cross Fusion

Author:

Xia Chenxing1,Tao Zhanpeng1,Wang Wei2,Zhao Wenjun1,Ge Bin1,Gao Xiuju3,Li Kuan-Ching4,Zhang Yan5

Affiliation:

1. College of Computer Science and Engineering, Anhui University of Science and Technology

2. Anyang Cigarette Factory, China Tobacco Henan Industrial Co. Ltd

3. College of Electrical and Information Engineering, Anhui University of Science and Technology

4. Department of Computer Science and Information Engineering, Providence University

5. The School of Electronics and Information Engineering, Anhui University

Abstract

Abstract Recent work has demonstrated the Transformer model is effective for computer vision tasks. However, the global self-attention mechanism utilized in Transformer models does not adequately consider the local structure and details of images, which may result in the loss of information and local details, causing decreased estimation accuracy in gaze estimation tasks when compared to convolution or sequential stacking methods. To address this issue, we propose a parallel CNNs-Transformer aggregation network (CTA-Net) for gaze estimation, which fully leverages the advantages of the Transformer model in modeling global context while the convolutional neural networks (CNNs) model in retaining local details. Specifically, Transformer and ResNet are deployed to extract facial and eye information, respectively. Additionally, an attention cross fusion (ACFusion) Block is embedded with CNN branch, which decomposes features in space and channels to supplement lost features, suppress noise, and help extract eye features more effectively. Finally, a dual-feature aggregation (DFA) module is proposed to effectively fuse the output features of both branches with the help feature a selection mechanism and a residual structure. Experimental results on the MPIIGaze and Gaze360 datasets demonstrate that our CTA-Net achieves state-of-the-art results.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3