Simultaneous Hydrodistillation of Cedrus atlantica Manetti and Salvia rosmarinus Spenn: Optimization of anti-wood-decay fungal activity using mixture design methodology

Author:

Annemer Saoussan1,zoubi Yassine Ez1,Satrani Badr2,Stambouli Hamide3,Assouguem Amine1,Bouayoun Taoufik3,Farah Abdellah1

Affiliation:

1. University Sidi Mohammed Ben Abdellah

2. Forestry Research Center - Rabat

3. Institute of Forensic Sciences of Gendarmerie Royal

Abstract

Abstract Chemical fungicides are often harmful to people and the environment because of their toxicity. The wood protection industry places a high priority on replacing them with natural products. Therefore, this investigation focused on developing a formulation of a binary combination of Salvia rosmarinus Spenn and Cedrus atlantica Manetti obtained by Simultaneous hydrodistillation to protect the wood from decay using a mixture design methodology. The chemical composition of EOs was identified by Gas chromatography coupled with mass spectrometry (GC/MS), and their anti-wood-decay fungal activity was assessed using the macrodilution method against four fungi responsible for wood decay: Coniophora puteana, Coriolus versicolor, Gloeophyllum trabeum, and Poria placenta. The results of GC/MS identified myrtenal as a new component appearing in all binary combinations. The optimum anti-wood-decay fungal activity was observed in a combination of 60% S. rosmarinus and 40% C. atlantica essential oils, providing an effective concentration for 50 percent of maximal effect (EC50) value of 9.91 ± 1.91 and 9.28 ± 1.55 µg/mL for C. puteana and C. versicolor, respectively. The highest anti-wood-decay fungal activity for G. trabeum and P. placenta was found in the combination of 55% of S. rosmarinus and 45% of C. atlantica essential oils, with an EC50 value of 11.48 ± 3.73 and 22.619 ± 3.79 µg/mL, respectively. Combined simultaneous hydrodistillation improved the antifungal effect of these essential oils. These results could be used to improve antifungal activity and protect wood against wood-decay fungi.

Publisher

Research Square Platform LLC

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3