Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products

Author:

Jaloux Charlotte1ORCID,Bonnet Maxime1,Vogtensperger Marie2,Witters Marie2,Veran Julie2,Giraudo Laurent3,Sabatier Florence3,Michel Justin2,Lacroix Romaric2,Chareyre Corinne2,Legré Regis2,Guiraudie-Capraz Gaelle1,Féron François1

Affiliation:

1. Institute of neurophysiopathology

2. APHM: Assistance Publique Hopitaux de Marseille

3. AP-HM: Assistance Publique Hopitaux de Marseille

Abstract

Abstract Background: The olfactory ecto-mesenchymal stem cell (OE-MSC) are mesenchymal stem cells originating from the lamina propria of the nasal mucosa. They have neurogenic and immune-modulatory properties and showed therapeutic potential in animal models of spinal cord trauma, hearing loss, Parkinsons’s disease, amnesia, and peripheral nerve injury.In this paper we designed a protocol that meet the requirements set by human health agencies to manufacture these stem cells for clinical applications. Once purified, OE-MSCs can be used per se or expanded in order to get the extracellular vesicles (EV) they secrete. A protocol for the extraction of these vesicles was validated and the EV from the OE-MSC were functionally tested on an in vitro model. Methods: Nasal mucosa biopsies from three donors were used to validate the manufacturing process of clinical grade OE-MSC. All stages were performed by expert staff of the cell therapy laboratory according to aseptic handling manipulations, requiring grade A laminar airflow. Results: Enzymatic digestion provides more rapidly a high number of cells and is less likely to be contaminated. Foetal calf serum was replaced with human platelet lysate and allowed stronger cell proliferation, with the optimal percentage of platelet lysate being 10%. Cultivated OE-MSCs are sterile, highly proliferative (percentage of CFU-F progenitors was 15,5%) and their maintenance does not induce chromosomal rearrangement (karyotyping and chromosomal microarray analysis were normal). These cells express the usual phenotypic markers of OE-MSC. Purification of the EVs was performed with ultracentrifugation and size exclusion chromatography. Purified vesicles expressed the recognized markers of EVs (Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines) and promoted cell differentiation and neurite elongation in a model of neuroblastoma Neuro2a cell line. Conclusions: We developed a safer and more efficient manufacturing process for clinical-grade olfactory stem cells, these cells can now be used in humans. A phase I clinical trial will begin soon. An efficient protocol for the purification of the OE-MSC EVs have been validated. These EVs exert neurogenic properties in vitro. More studies are needed to understand the exact mechanisms of action of these EVs and prove their efficacy and safety in animal models.

Publisher

Research Square Platform LLC

Reference70 articles.

1. Thomas ED, Lochte HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957 Sep 12;257(11):491–6.

2. Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol OncolJ Hematol Oncol. 2021 Feb 12;14(1):24.

3. Mesenchymal stem cells;Väänänen HK;Ann Med,2005

4. Adult craniofacial stem cells: sources and relation to the neural crest;Kaltschmidt B;Stem Cell Rev Rep,2012

5. High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities;Calloni GW;Proc Natl Acad Sci U S A,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3