Stable Peri-hexacene: A Long-Waited Open-Shell Graphene Fragment

Author:

Zeng Wangdong1,Zhang JinJi1,Fang Xiaojing1,Niu Weiwei2,Yu Yiming1,Hu Yanlin1,Sun Jiawen1,Xu Ying1,Zhou Zhihua1,Zheng Baishu1,Jiang Qing3,Li Guangwu4

Affiliation:

1. Hunan University of Science and Technology

2. Nankai University

3. Hunan University of Science and Engineering

4. Department of Chemistry, National University of Singapore

Abstract

Abstract

[n]Peri-acenes ([n]PA) have attracted great interest as promising candidates for nanoelectronics and spintronics. However, the synthesis of large [n]PA (n > 4) is extremely challenging due to their intrinsic open-shell radical character and high reactivity. Herein, we report the successful synthesis and isolation of a derivative (1) of peri-hexacene in crystalline form. The structure of 1 was unequivocally confirmed by X-ray crystallographic analysis. Its ground state, aromaticity and photophysical properties were systematically studied by both experimental methods and theoretical calculations. Although the parent peri-hexacene is calculated to have a very large diradical character (y0 = 94.5%), 1 shows reasonable stability (t1/2 = 24 h under ambient conditions) due to the kinetic blocking. 1 exhibited an open-shell singlet ground state with a small singlet-triplet energy gap (-1.33 kcal/mol from SQUID measurements). 1 has also a narrow HOMO-LUMO energy gap (1.05 eV) and displays amphoteric redox behavior. This work opens new avenues for the design and synthesis of stable zigzag-edged graphene-like molecules with significant diradical character.

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. (a) Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17961. (b) Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349. (c) Kumar, S.; Pratap, S.; Kumar, V.; Mishra, R. K.; Gwag, J. S.; Chakraborty, B. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review. Luminescence 2023, 38, 909–953. (d) Mousavi, S. T.; Badehian, H. A.; Gharbavi, K. Optical spectra of zigzag graphene nanoribbons: a first-principles study. Phys. Scr. 2022, 97, NO. 105803. (e) Wang, Z.; Sun, M.; Zhao, Y.; Xiao, J.; Dai, X. The electronic and transport properties of the folded zigzag graphene nanoribbon. Surf. Interfaces. 2016, 5, 72–75. (f) Wang, X.-S.; Zhang, F.; Si, N.; Meng, J.; Zhang, Y.-L.; Jiang, W. Unique magnetic and thermodynamic properties of a zigzag graphene nanoribbon. Physica. A. 2019, 527, NO. 121356. (g) Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, NO. 216803. (h) Kan, E.-j.; Li Z, Yang J, Hou J, Paulus B, Tremblay (1996) Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225. (i) Zhang, D.-B.; Wei, S.-H. Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons. Npj. Comput. Mater. 2017, 3, 32–37. (j) Shao, J.; Paulus, B., Tremblay J. C. Local current analysis on defective zigzag graphene nanoribbons devices for biosensor material applications. J. Comput. Chem. 2021, 42, 1475–1485

2. Martín-Martínez FJ, Fias S, Hajgató B, Van Lier G, De Proft F, Geerlings P Inducing Aromaticity Patterns and Tuning the Electronic Transport of Zigzag Graphene Nanoribbons via Edge Design (eds) (2013) J. Phys. Chem. C. 117, 26371-26384. (b) Feng, J.

3. Bi, S. How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons. Phys. Chem. Chem. Phys. 2021, 23, 20695-20701. (c) Li, Z.

4. Duan, W. The half-metallicity of zigzag graphene nanoribbons with asymmetric edge terminations. J. Nanosci. Nanotechno. 2010, 10, 5374-5378

5. Martín-Martínez FJ, Fias S, Hajgató B, Van Lier G, De Proft F, Geerlings P Inducing Aromaticity Patterns and Tuning the Electronic Transport of Zigzag Graphene Nanoribbons via Edge Design (eds) (2013) J. Phys. Chem. C. 117, 26371-26384.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3