A high power, fully implanted and battery free platform for chronic functional electrical stimulation enabled by passive resonator antenna design.

Author:

Burton Alex1,Wang Zhong2ORCID,Song Dan2ORCID,Tran Sam2,Hanna Jessica1,Bakall Jakob1,Clausen David1,Anderson Jerry1,Peralta Roberto1,Sandepudi Kirtana2,Benedetto Alex2,Yang Ethan2,Basrai Diya2,Miller Lee2,Tresch Matthew2ORCID,Gutruf Philipp1ORCID

Affiliation:

1. The University of Arizona

2. Northwestern University

Abstract

Abstract Electrical stimulation of the neuromuscular system holds promise for both scientific and therapeutic biomedical applications. Supplying and maintaining the power necessary to drive stimulation chronically is a fundamental challenge in these applications, especially when high voltages or currents are required. Wireless systems, in which energy is supplied through near field power transfer, could eliminate complications caused by battery packs or external connections, but currently do not provide the harvested power and the voltages for applications such as muscle stimulation. Here, we introduce a passive resonator optimized power transfer design that overcomes these limitations, enabling voltage compliances of ± 20 V and power over 300 mW at device volumes of 0.2 cm2, thereby improving power transfer 500% over previous systems. This improved performance enables multichannel, biphasic, current-controlled operation at clinically relevant voltage and current ranges with digital control and telemetry. Implanted devices remain operational over 6 weeks in both intact and spinal cord injured rats and are capable of producing fine control of spinal and muscle stimulation.

Publisher

Research Square Platform LLC

Reference59 articles.

1. Binaural hearing with electrical stimulation;Kan A;Hear. Res.,2015

2. Electroanalgesia: Its Role in Acute and Chronic Pain Management;White PF;Anesth. Analg.,2001

3. Deep brain stimulation for the treatment of Parkinson’s disease;Volkmann J;J. Clin. Neurophysiol.,2004

4. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation;Krucoff MO;Frontiers in Neuroscience,2016

5. McPherson, J. G., Miller, R. R. & Perlmutter, S. I. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc. Natl. Acad. Sci. 112, 12193–12198 (2015).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3