Novel 2D/3D Hybrid Organoid System for High-Throughput Drug Screening in iPSC Cardiomyocytes

Author:

Lewis Jordann1,Yaseen Basil1,Saraf Anita1

Affiliation:

1. UPMC Children’s Hospital of Pittsburgh and UPMC Heart and Vascular Institute

Abstract

Abstract

Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies for analyzing these parameters are expensive and resource-intensive. We sought to design a 2D/3D hybrid organoid system and harness optical imaging techniques to assess electromechanical properties, calcium dynamics, and signal propagation across CMs in a high-throughput manner. We validated our methods using a doxorubicin-based system, as the drug has well-characterized cardiotoxic, pro-arrhythmic effects. hiPSCs were differentiated into CMs, assembled into organoids, and thereafter treated with doxorubicin. The organoids were then replated to form a hybrid 2D/3D iPSC-CM construct where the 3D cardiac organoids acted as the source of electromechanical activity which propagated outwards into a 2D iPSC-CM sheet. The organoid recapitulated cardiac structure and connectivity, while 2D CMs facilitated analysis at an individual cellular level which recreated numerous doxorubicin-induced electrophysiologic and propagation abnormalities. Thus, we have developed a novel 2D/3D hybrid organoid model that employs an integrated optical analysis platform to provide a reliable high-throughput method for studying cardiotoxicity, providing valuable data on calcium, contractility, and signal propagation.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3