Advancements in Feature Fusion, Enhancement Techniques, and Loss Function Optimization for Infrared and Visible Light Fusion Using the YOLOv8 Framework

Author:

Xu Wenyuan1,Li Shuai1,Ji Yongcheng1,Li Xiang1,Cui Chuang1

Affiliation:

1. Northeast Forestry University

Abstract

Abstract

To mitigate the parameter increase from integrating infrared data and enhance detection accuracy, this work introduces an advanced fusion framework for visible and infrared thermal imaging. It presents the refined C2fv1k9 module and the MA4CBCA feature enhancement module, leveraging a hybrid attention mechanism. Additionally, the CorAF2n1 feature fusion module, utilizing an attention mechanism, and enhancements to the CIOU loss function's penalty term are proposed. This culminates in conducting experiments and demonstrations using the model yolov8n_f4s2c_m4ca2n1_cdiou5_cdiou5. Relative to the previously examined yolov8n_f4_scaff2_adf model, this model's accuracy improved to 0.924 from 0.885, recall rate to 0.916 from 0.876, and mAP@50–95 significantly increased to 0.728 from 0.711. These enhancements not only underscore the model's superiority in accuracy and reliability but also demonstrate its capacity for delivering exceptional detection performance with minimal computational resources.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Concurrent illumination and communication: A survey on visible light communication;Vappangi S;Physical Communication,2019

2. A Review of Yolo algorithm developments;Jiang P;Procedia Computer Science,2022

3. Lin, T.-Y. et al. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

4. Liu, S., Qi, L., Qin, H., Shi, J. & Jia, J. in Proceedings of the IEEE conference on computer vision and pattern recognition. 8759–8768.

5. Wang, C.-Y. et al. in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020, June 14, 2020 - June 19, 2020. 1571–1580 (IEEE Computer Society).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3