Kernel ridge regression improving based on golden eagle optimization algorithm for multi-class classification

Author:

Mahmood Shaimaa Waleed1,Algamal Zakariya Yahya1

Affiliation:

1. University of Mosul

Abstract

Abstract

Kernel Ridge Regression is a supervised machine-learning approach that merges concepts from ridge regression and the kernel trick. It is especially beneficial for addressing regression problems characterized by a nonlinear relationship between the input and output variables. Kernel Ridge Regression (KRR) involves utilizing the kernel trick to implement ridge regression. The approach can acquire knowledge of a non-linear function in a space with more dimensions while taking advantage of ridge regression's regularization. However, the hyper-parameter settings that define the kernel type influence KRR's effectiveness. Significant processing costs, memory expenses, and low accuracy burden the current approaches for collecting these hyper parameter values. This study introduces a substantial enhancement to the golden eagle optimization method. The enhancement entails implementing elite opposite-based learning (EOBL) to increase population diversity in the search space. We do this to choose the optimal hyper parameters effectively. We used ten publicly available multi-class datasets to verify and authenticate the effectiveness of the suggested enhancement to Kernel Ridge Regression. Based on several assessment criteria, the results clearly showed that the suggested enhancement outperforms all other basic procedure techniques in terms of categorization efficacy.

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. KOC+: Kernel ridge regression based one-class classification using privileged information;Gautam C;Information Sciences,2019

2. Nonlinear forecasting with many predictors using kernel ridge regression;Exterkate P;International Journal of Forecasting,2016

3. Exterkate, P., Modelling issues in kernel ridge regression. 2011.

4. Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system;Mohapatra P;Swarm and Evolutionary Computation,2016

5. He, J., et al. Kernel ridge regression classification. in 2014 International Joint Conference on Neural Networks (IJCNN). 2014. IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3