Flow hydrodynamics drive effective fish attraction behaviour into slotted fishway entrances

Author:

Farzadkhoo Maryam1ORCID,Kingsford Richard T1,Suthers Iain M.1,Felder Stefan1

Affiliation:

1. University of New South Wales

Abstract

Abstract Effective fishways rely on attracting fish, utilising the natural rheotactic behaviour of fish to orient into an attraction flow near the entrance. Despite the critical importance of attraction, understanding of the hydrodynamics of vertical slot entrances in relation to fish behaviour remains poor. Herein, hydrodynamic measurements of flows at slotted fishway entrances were experimented with two different designs, two velocities, three water depths, and two fish species, silver perch (Bidyanus bidyanus) and Australian bass (Percalates novemaculeata). Fish behaviours were tracked in relation to hydrodynamic measures of three-dimensional velocity and turbulent kinetic energy (TKE). There were distinct differences in the attraction flow between entrance designs, irrespective of velocity and water depth. Plain slotted entrance produced a more symmetric flow in the centre of the flume, causing fish to approach the entrance by skirting the core of the attraction jet flow and areas of high turbulence. In contrast, streamlined slotted entrance design resulted in an asymmetric attraction flow which guided fish along the wall of the flume, improving attraction for both species. There were clear patterns in swimming trajectories for silver perch, swimming along the sidewalls of the observation zone towards the entrance, but Australian bass were less predictable, using random routes on their way to the slotted entrance. Both species preferred areas of low turbulence (TKE < 0.02 m2/s2) and the asymmetric attraction flow along one of the sidewalls created by the streamlined entrance improved the fish attraction. This work has important implications for design of vertical slotted entrance systems.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3