η 3 -allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl- coumarin esters

Author:

González-Montiel Simplicio1,Velázquez-Jiménez René1,Segovia-Pérez Raúl1,Fragoso-Soto Willyfredo1,Martínez-Otero Diego2,Andrade-López Noemí1,Salazar-Pereda Verónica1,Cruz-Borbolla Julián1

Affiliation:

1. Universidad Autónoma del Estado de Hidalgo

2. Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM

Abstract

Abstract A series of 2-, 3- and 4-pyridylmethyl-coumarin esters ligands (1–3) and their η3-allyl palladium complexes (1-Pd – 3-Pd) have been designed, synthetized and characterized. NMR analysis of compounds 1-Pd – 3-Pd indicated the presence of the allyl fragment. The molecular structure of 2, 3 and 1-Pd was determined by X-ray crystallographic analysis. The molecular structure 1-Pd reveals that coumarin ligand (2) is coordinated to the palladium center via a monodentate fashion through the nitrogen atom of the pyridinyl fragment while the allyl group is binding via a η3 fashion in an overall square-planar geometry completed with a chloride atom. An investigation of intermolecular interactions in crystal packing via a Hirshfeld surfaces and fingerprint plots analyses showed a wide variety of intermolecular contacts such as H•••O and H•••N hydrogen bonding, π•••π stacking, C–H•••π and carbonyl (lone pair)•••π interactions that generated polymeric arrays.

Publisher

Research Square Platform LLC

Reference21 articles.

1. a) S. Alexopoulos, A. Gkouskou, G. Stravodimos, Anastasia S. Tsagkarakou, I. Tsialtas, D. Katounis, A-M G. Psarra, D. Leonidas, G. Brahmachari, J. M. Hayes, V. Skamnaki. The druggability of the ATP binding site of glycogen phosphorylase kinase probed by coumarin analogues. Current Research in Chemical Biology. 2 (2022) 100022. https://doi.org/10.1016/j.crchbi.2022.100022; b) S. B. Patil, Medicinal significance of novel coumarin analogs: Recent studies. Results in Chemistry. 4 (2022) 100313. https://doi.org/10.1016/j.rechem.2022.100313; c) M. Akki, D. S. Reddy, K. S. Katagi, A. Kumar, H. C. Devarajegowda, S. Kumari, V. Babagond, S. Mane, S. D. Joshi. Synthesis of Coumarin-Thioether Conjugates as Potential Anti-tubercular Agents: Their Molecular Docking and X-ray Crystal Studies, Journal of Molecular Structure. 1266 (2022) 133452. https://doi.org/10.1016/j.molstruc.2022.133452; d) A. Rawat, A. V. Bhaskar Reddy. Recent advances on anticancer activity of coumarin derivatives. European Journal of Medicinal Chemistry Reports. 5 (2022) 100038. https://doi.org/10.1016/j.ejmcr.2022.100038; e) D. S. Reddy, M. Kongot, A. Kumar. Coumarin hybrid derivatives as promoising leads to treat tuberculosis: Recen developments and critical aspects of structural design to exhibit ant-tubercular activity. Tuberculosis, 127 (2021) 102050. https://doi.org/10.1016/j.tube.2020.102050; e) K. Ostotrowska. Coumarin-piperize derivatives as biologically active compounds. Saudi Pharmaceutical Journal 28 (2020) 220. https://doi.org/10.1016/j.jsps.2019.11.025; f) G. Arraché Gonçalvez, A. Ronchi Spillere, G. Machado das Neves, L. Porto Kagami, G. Lino von Poser, R. F. Santos Canto, VL. Eifler-Lima. Natural and synthetic coumarins as antileishmanial agents: A review. European Journal of Medicinal Chemistry, 203 (2020) 112514. https://doi.org/10.1016/j.ejmech.2020.112514; g) T. Al-Warhi, A. Sabt, E.B. Elkaeed, W. M. Eldehna, Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry. 103 (2020) 104163. https://doi.org/10.1016/j.bioorg.2020.104163; h) Z. Li, D. Kong, Yunsheng Liu, M. Li. Pharmacological perspectives and molecular mechanisms of coumari derivatives against virus disease. Genes and Dieses, 9 (2022) 80–94. https://doi.org/10.1016/j.gendis.2021.03.007; i) K. Pršir, E. Horak, M. Kralj, L. Uzelac, S. Liekens, I. Murković Steinberg, S. Krištafor. Design, synthesis, spectroscopic characterization and In vitro Cytostatic evaluation of novel bis(coumarin-1,2,3-triazolyl)benzenes and hybrid coumarin-1,2,3-tiazolyl-aryl derivatives. Molecules. 27 (2022) 637. https://doi.org/10.3390/molecules27030637; j) Arya C.G., R. Gondru, Y. Li, J. Banothu. Coumarin-benzimidazole hibrids: A review of developments in medical chemistry. European Journal of Medicinal chemistry. 227 (2022) 113921. https://doi.org/10.1016/j.ejmech.2021.113921; k) A. Serdyukov, I. Kosenko, A. Druzina, M. Grin, A. F. Mironov, V.I. Bregadze, J. Laskova. Anionic polyhedral boron clusters conjugates with 7-dietylamino-4-hydroxicoumarin. Synthesis amd lipophilicity. Journal of Organometallic Chemistry. 946–947 (2021) 121905. https://doi.org/10.1016/j.jorganchem.2021.121905; l) P. Pranhala, S. M. Sutar, H. M. Savanur, S. D. Jshi, R. G. Kalkhambkar. In vitro antimicrobial combat, molecular modelling and structure activity relationship studies of novel class of aryl-ethyne tethered coumarin analogues and some 3-aryl coumarin derivates. European Journal of Medicinal Chemistry Reports. 5 (2022) 100048. https://doi.org/10.1016/j.ejmcr.2022.100048; m) S. Yadav, S. Singh, C. Gupta. Envriromental benign synthesis of some novel biologically active 7-hydroxy-4-methyl coumarin derivatives. Current Research in Green and Sustainable Chemistry. 5 (2022) 100260. https://doi.org/10.1016/j.crgsc.2022.100260; n) A. Dorababu. Coumarin-heterocycle framework: A privileged approach in promising anticancer drug design. European Journal of Medicinal Chemistry Reports. 2 (2021) 100006. https://doi.org/10.1016/j.ejmcr.2021.100006; o) M. Patel, N. Pandey, J. Timaniya, P. Parikh, A. Chauhan, N. Jain, K. Patel. Coumarin-carbazole based functionalized pyrazolines: synthesis, characterization, anticancer investigation and molecular docking. RSC Advances. 11 (2021) 27627. https://doi.org/10.1039/D1RA03970A;

2. a) A.A. Al-Amiery, Y.K. Al-Majedy, A.A.H. Kadhum, A.B. Mohamad. New coumarin derivative as an eco-friendly inhibitor of corrosion of mild steel in acid medium. Molecules 20 (1) (2015) 366. https://doi.org/10.3390/molecules20010366; b) D. Mahalakshmi, V. Hemapriya, E.P. Subramaniam, S. Chitra. Synergistic effect of antibiotics on the inhibition property of aminothiazolyl coumarin for corrosion of mild steel in 0.5 M H2SO4. Journal of Molecular Liquids. 284 (2019) 316. https://doi.org/10.1016/j.molliq.2019.03.158; c) M. M. Khowdiary, N. A. Taha, A. A. Barqawi, A. A. Elhenawy, M. Sheta, N. Hassan, Theoretical and experimental evaluation of the anticorrosion properties of new Coumarin’s derivatives. Alexandria Engineering Journal. 61 (2022) 6937. https://doi.org/10.1016/j.aej.2021.12.037; d) H. Tang, J. Sun, D. Su, Y. Huang, P. Wu. Coumarin as a green inhibitor of chloride-induced aluminum corrosion: theoretical calculation and experimental exploration. RCS Advances. 11 (2021) 24926. https://doi.org/10.1039/D1RA02622D

3. a) C-J. Hua, W-J. Niu, Y-J. Li. Optical property investigations of coumarin and indene diketone structure dyes: Experiment and calculation. Results in Chemistry. 4 (2022) 100257. https://doi.org/10.1016/j.rechem.2021.100257; b) Z. Zhou, W. Niu, Z. Lin, Y. Cui, X. Tang, Y. Li. A novel “turn-off” fluorescent sensor for Al3 + detection based on quinolinecarboxamide-coumarin. Inorganic Chemistry Communications, 121 (2020) 108168. https://doi.org/10.1016/j.inoche.2020.108168; c) W. Shen, J. Zheng, Z. Zhou, D. Zhang. Approaches for the synthesis of o.-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjagates and their biomedical applications. Acta Biomaterilalia, 11 5(2020) 75. https://doi.org/10.1016/j.actbio.2020.08.024: d) M. Rahal, B. Graff, J. Toufaily, T. Hamieh, F. Dumur, J. Lalevée. European Polymer Journal, 154 (2021) 110559. https://doi.org/10.1016/j.eurpolymj.2021.110559; e) M. Grazul, E. Budzisz. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coordination Chemistry Reviews. 253 (2009) 2588. https://doi.org/10.1016/j.ccr.2009.06.015; f) J. Xu, Y. Bai, Q. Ma, J. Sun, M. Tian, L. Li, N. Zhu, S. Liu. Ratiometric determination of nitroxyl utilizing a novel fluorescence resonance energy transfer-based fluorescent probe based on a coumarin-rhodol derivative. ACS Omega, 7 (2022) 5264. https://doi.org/10.1021/acsomega.1c06403; g) E. Kandemir, M. Özkütük, B. Aydiner, N. Seferoğlu, H. Erer, Z. Seferoğlu. Novel fluorescent coumarin-thiazole based sensors for selective determination of cyanide in aqueos media. Journal of Molecular Structure, 1249 (2022) 131593. https://doi.org/10.1016/j.molstruc.2021.131593; h) S. K. Padhan, V. K. Mishra, N. Murmu, S. Mishra, S. N. Sahu. Throuhg bond energy transfer (TBET)-operated fluoride ion sensing via spirolactam ring opening of a coumarin-fluorescein bichromophoric dyad. RSC advances. 10 (2020) 28422. https://doi.org/10.1039/D0RA05357K

4. a) S. Balcioğlu, M. O. Karataş, C. Ateş, B. Alici, I. Özdemir. Therapeutic potencial of coumarin beraing metal complexes: We are we headed?. Biorganic and Medicinal Chemistry Letters 10 (2020) 126805. https://doi.org/10.1016/j.bmcl.2019.126805; b) I. Georgieva, T. Mihaylov, N. Trendafilova, Lanthanide and transition metal complexes of bioactive coumarins: Molecular modeling and spectroscopic studies. Journal of Inorganic Biochemistry. 135 (2014) 100. https://doi.org/10.1016/j.jinorgbio.2014.03.003; c) A. Gautam, C. R. Shahini, A. P. Siddappa, M. J. Grzegorz, B. Hemavathi. T.H. Ahipa, B. Srinivasa. Palladium(II) complexes of coumarin substitud 1,2,4–triazol–5–ylidenes for catalytic C–C cross–coupling and C–H activation reactions. Journal of Organometallic Chemistry. 934 (2021) 121540. https://doi.org/10.1016/j.jorganchem.2020.121540; d) R.F. Fatykhov, A.D. Sharapov, E.S. Starnovskaya, Y.K. Shtaitz, M.I. Savchuk, D.S. Kopchuck, I.L. Nikonov, G.V. Zyryanov, I. A. Khalymbadzha, O.N. Chupakhin. Coumarin-pyridine push-pull fluorophores: Synthesis and photophysical studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 267 (2022) 120499. https://doi.org/10.1016/j.saa.2021.120499; e) H. Singh, S. Srredharan, R. Tiwari, C. Walther, C. Smyte, S.K. Pramanik, J.A. Thomas, A. Das. A fluorescent chemodosimeter for organell-specif imaging of nucleoside polyphosphate dymamics in living cells. Crystal Growth & Design. 18 (2018) 7199. https://doi.org/10.1021/acs.cgd.8b01409; f) J. Liu, X. Yue, Z. Wang, X. Zhang, Y. Xu. Coumarin 7 funtionalized europium-based metal-organic-framework luminescent composites for dual-mode optical thermometry. Journal of Materials Chemistry C. 8 (2020) 13328. https://doi.org/10.1039/D0TC03365K; h) D. K. Singh, M. Nath. Synthesis and photophysical properties of β-triazole brigded porphyrin-coumarin dyads. RSC Advances. 5 (2015) 68209. https://doi.org/10.1039/C5RA13955D; i) A. Arauzo, L. Gasque, S. Fuertes, C. Tenorio, S Bernés, E Bartolomé. Coumarin-lanthanide based compounds with SMM behavior and high quantum yield luminescence. Dalton Transactions. 49 (2020) 13671. https://doi.org/10.1039/D0DT02614J; j) M. Olgun Kartaş, G. Calgin, B. Alici, B. Gökçe, N. Gençer, T. Tok, O. Arslan, I. Kiliç-Cikla, N. Özdemir. Inhibition of paraoxonase 1 by coumarin-sustitutes N-hetercyclic carbene silver(I), ruthenium(II) ana dalladium(II) complexes. Applied Organometallic Chemistry. 33 (2019) 5130. https://doi.org/10.1002/aoc.5130.

5. a) T. Balić, F. Perdih, M. Poćkaj, M. Molnar, M. Komar, I. Balić. Polymorphism of coumarin thiona-triazole-4-methyl-7-[(4-phenyl-5-thioxo-4,5-dihydro-1H, 1,2,4,triazol-3-yl)methoxy]2Hchromen-2-one. Journal of Molecular Structure. 1231 (2021) 129957. https://doi.org/10.1016/j.molstruc.2021.129957; b) S. Kumar Seth, D. Sarkar, A. Dipankar Jana, T. Kar. On the possibility of tuning molecular edges to direct supramolecular self-asembly in coumarin derivatives through cooperative weak forces: crystallographic and Hirsfeld surface analyses Crystal Growth & Design. 11 (2011) 4837. https://doi.org/10.1021/cg2006343; c) E.V. García-Báez, F.J. Martínez-Marínez, H. Höpfl, I. I. Padilla-Martínez. Π-stacking interactions and C-H•••X (X = O, aryl) hydrogen bonding as directing features of the supramolecular self-association in 3-carbocy and 3-amido coumarin derivatives. Crystal Growth & Design. 3 (2003) 35. https://doi.org/10.1021/cg0255826; d) K. Kasperkiewicz, M. Malecka, M.B. Ponczek, P. Nowak, E. Budzisz, Design synthesis, X-ray structures of new coumarin derivatives and prespectives of binding them to albumin and vitamin K Epoxide reductase complex subunit 1. Crystal Growth & Design. 16 (2016) 456. https://doi.org/10.1021/acs.cgd.5b01456; e) Kallappa M. Hosamami, Dinesh S. Reddy, Hirihalli C. Devarajegowda, Mahantesh M. Kurjogi. A facile synthesis and evoluation of new biomolecule-based coumarin-thiazoline hybrids as potent anti-tubercular agents their cytotoxicity, DNA cleavage and X-ray studies. RSC Advances. 5 (2015) 64566–64581. https://doi.org/10.1039/C5RA09508E f) S. V. Shishkina, I. S. Konovalova, S. M. Kovalenko, P.V. Trostianko, A. O. Geleverya. N. D. Bunyatyan. Hydrogen bonding vs. stacking interaction in the crystals of the simplest coumarin derivatives: a study from the energetic viewpoint. CrystalEngineeringCommunication, 21 (2019) 6945. https://doi.org/10.1039/C9CE01344J

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3