Temporal Dependency Modeling in Lane- Changing Decisions Using Long Short-Term Memory Networks

Author:

Parthasarathy Kavya Murali1

Affiliation:

1. University of Stirling

Abstract

Abstract

Decision-making is a multifaceted event because the action sequences inherent in human decision-making are shaped by complex cognitive processes, including but not limited to beliefs, desires, intentions, and the ability to infer the mental states of others (theory of mind) Lin et al. (2022). These situations introduce substantial obstacles to accurately forecasting human decisions, especially when fundamental psychological mechanisms are not considered. Addressing this, this study explores the temporal evolution of lane-changing decisions among drivers through the application of sequence models. By examining how decision-making patterns develop when drivers encounter a series of scenarios or familiarise themselves with the task, this study provides insights into time-sensitive decision-making. This study presents an LSTM-based model for predicting lane-changing decisions in road scenarios. Utilising the strength of LSTMs in capturing temporal dependencies, our model demonstrates high accuracy in training and validation phases, suggesting robust generalisation and potential for real-world Advanced Driver Assistance Systems (ADAS)

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Ahmed, K. I. 1999, Modeling Drivers’ Acceleration and Lane Changing Behavior, PhD thesis, Massachusetts Institute of Technology

2. Ariely, D. and Zakay, D. 2001, Acta psychologica, 108, 187

3. Arvai, J. 2013, Thinking, fast and slow, Daniel Kahne- man, Farrar, Straus & Giroux

4. Busemeyer, J. R. and Townsend, J. T. 1993, Psychological review, 100, 432

5. Gers, F. A., Schmidhuber, J., and Cummins, F. 2000, Neural computation, 12, 2451

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3