Ion coherence: A physical derivation of high-flux ion transport in biological channel

Author:

Song Bo1ORCID,Hu Yixiao2,Wang Yue2,Gao Jun2ORCID,Jiang Lei3ORCID

Affiliation:

1. University of Shanghai for Science and Technology

2. College of Informatics, Huazhong Agricultural University

3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences

Abstract

Abstract Biological ion channels usually conduct the high-flux transport of 107 to 108 ions/s, however the underlying mechanism is still lacking [1-7]. Here, applying the KcsA potassium channel as a typical sample, by multi-timescale molecular dynamics simulations, we demonstrate that there is coherence of K+ ions confined in biological channel, which determines the transport. Specifically, the coherent oscillation state of confined K+ ions with a nanosecond-level lifetime in the channel dominates each of transport events, serving as the physical basis of the high flux of ~108 ions/s. The coherent transfer of confined K+ ions, only taking several picoseconds and having no perturbation on the ion coherence, acts as the directional key of transport. The increase of ion coherence can significantly enhance the ion current by a coherence-induced transition. These findings provide a theoretical evidence supporting that the energy-efficient high-flux ion transport of biological channel is physically derived from ion coherence.

Publisher

Research Square Platform LLC

Reference29 articles.

1. Hille, B. Ion Channels of Excitable Membranes (Oxford University Press, 2001).

2. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. & MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69 – 77 (1998).

3. From dynamic superwettability to ionic/molecular superfluidity;Zhang X;Acc. Chem. Res.,2022

4. Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q. & Clapham, D. E. A prokaryotic voltage-gated sodium channel. Science 294, 2372 – 2375 (2001).

5. Lee, K. S. & Tsein, R. W. Reversal of current through calcium channels in dialysed single heart cells. Nature 297, 498 – 501 (1982).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3