Deep Learning Model on 2-Dimensional Image Data using Convolutional Autoencoder and Fully Connected Neural Networks: Application to Computational Fluid Dynamics

Author:

Yoon Jaehyun1,Doh Jaehyeok2

Affiliation:

1. Seoul Cyber University

2. Gyeongsang National University

Abstract

Abstract This study proposes a deep-learning-based image prediction meta-modeling method to develop an image-based approximate optimized design using 2D image data. An image-based meta-model is generated with an autoencoder (AE) and fully connected neural networks (FNN). To create this meta-model, we suggested three methods as FNN-based AE, convolutional autoencoder (CAE) based on convolution neural networks (CNN), and hybrid-convolutional autoencoder (H-CAE) combining the FNN and CAE. To verify the proposed methods, we applied them to predict the pressure distribution for around a 2-dimensional airfoil to replace the computational fluid dynamics simulation. As a result, the H-CAE among the proposed methods shows the high prediction accuracy, 99.9811% of the best image reconstruction rate for the pressure distribution around the airfoil. Therefore, H-CAE offers the best learning capability. There is an advantage that the latent can be predicted using shape parameters of an airfoil as inputs via the FNN based on the latent with the compressed image data.

Publisher

Research Square Platform LLC

Reference30 articles.

1. Abbott, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections: including a summary of airfoil data. Courier corporation, Dover publication, Mineola.

2. Chandar AP, S., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V. C., & Saha, A. (2014). An autoencoder approach to learning bilingual word representations. In advances in neural information processing systems, Montreal, Canada, 2:1853–1861.

3. A multi-convolutional Autoencoder approach to multivariate geochemical anomaly recognition;Chen L;Minerals,2019

4. Introduction to backpropagation neural network computation;Erb RJ;Pharmaceutical research,1993

5. Artificial neural networks applied to landslide susceptibility assessment;Ermini L;Geomorphology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3