Kinetically Controlled Metal–Elastomer Nanophases for Environmentally Resilient Stretchable Electronics

Author:

Choi Won Jin1ORCID,Chae Soosang2,Nebel Lisa3ORCID,Cho Changhee4,Besford Quinn2,Knapp André2,Makushko Pavlo5,Zabila Yevhen5,Pylypovskyi Oleksandr5,Jeong Min Woo6,Avdoshenko Stanislav7,Sander Oliver3,Makarov Denys5,Chung Yoon Jang8,Fery Andreas9ORCID,Oh Jin Young6,Lee Tae-Il4

Affiliation:

1. Lawrence Livermore National Laboratory

2. IPF - Leibniz-Institut für Polymerforschung Dresden e.V.

3. Technische Universität Dresden

4. Gachon University

5. Helmholtz-Zentrum Dresden-Rossendorf e.V.

6. Kyung Hee University

7. Leibniz Institute for Solid State and Materials Research

8. Korea University

9. Leibniz Institute of Polymer Research

Abstract

Abstract Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are extremely limited due to difficulties in blending caused by thermodynamic incompatibility. Here, we present a controlled method using kinetics to mix Au atoms with dimethylsiloxane chains on the nanoscale. We found that the chain migration flux and metal deposition rate are key factors, allowing the formation of reticular nanophases when kinetically in-phase. Moreover, we observed spontaneous structural evolution, resulting in gyrified structures akin to the human brain. The hybridized gyrified reticular nanophases exhibit strain-invariant metallic electrical conductivity up to 156% areal strain, unparalleled durability in organic solvents and aqueous environments with pH 2–13, and remarkable mechanical robustness, ideal for environmentally resilient devices.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3