In vivo reprogramming of macrophages using pro-resolving factors to resolve experimental CNS inflammation

Author:

Gauthier Thierry1,Martin-Rodriguez Omayra1,Chagué Cécile1,Daoui Anna1,Ceroi Adam1,Varin Alexis1,Bonnefoy Francis1,Valmary-Degano Séverine2,Couturier Mélanie3,Behlke Susanne3,Saas Philippe4,Perruche Sylvain1

Affiliation:

1. Université Bourgogne Franche-Comté

2. Besançon University Hospital; Pathology department

3. MED’ INN’ Pharma

4. University of Nantes

Abstract

Abstract Background Reinstating inflammation resolution presents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. Methods Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control ongoing chronic neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). Results We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with macrophages in vivo or in vitro reprogrammed with such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. Conclusions Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3