Rationally Reconstructed Metal-organic Frameworks as Robust Oxygen Evolution Electrocatalysts

Author:

Zhang Chengxu1,Qi Qianglong1,Mei Yunjie1,Hu Jue1ORCID,Sun Mingzi2ORCID,Zhang Yingjie1,Huang Bolong2ORCID,Zhang Libo1,Yang Shihe3

Affiliation:

1. Kunming University of Science and Technology

2. Hong Kong Polytechnic University

3. Peking University Shenzhen

Abstract

Abstract Although the metal-organic framework (MOF) based materials have become one of the most important types of electrocatalysts for the sluggish oxygen evolution reaction (OER), a novel design strategy for the MOF structure is highly needed to overcome the current development bottleneck of the electrochemical performance. Reconstructing MOFs towards a designed framework structure provides breakthrough opportunities to achieve unprecedented OER electrocatalytic performance, but has rarely, if ever, been proposed and investigated yet due to the significant challenges during the synthesis. Here, we report the first successful fabrication of a robust OER electrocatalyst by precision reconstruction of an MOF structure from MOF-74-Fe to MIL-53(Fe)-2OH with different coordination environments at the active sites. Theoretical calculations have revealed that the Fe sites in MIL-53(Fe)-2OH with uncoordinated phenolic hydroxyls are more electroactive than that in MOF-74-Fe. Benefiting from this desired electronic structure, the designed MIL-53(Fe)-2OH catalyst exhibits unprecedentedly high intrinsic OER activity, including a low overpotential of 215 mV at 10 mA cm−2, low Tafel slope of 45.4 mV dec−1 and high turnover frequency (TOF) of 1.44 s−1 at the overpotential of 300 mV, which is 81 times higher than the TOF of the commercial IrO2 catalyst (0.0177 s−1). The radically reduced eg-t2g crystal field splitting in Fe-3d and thus the much suppressed electron hopping barriers through the synergistic effects of the O species from the coordinated carboxyl groups and the uncoordinated phenolic groups guarantee the efficient OER in MIL-53(Fe)-2OH. Consistent with the DFT calculations, the real-time kinetic simulation reveals that the conversion from O* to OOH* is the rate-determining step on the active sites of MIL-53(Fe)-2OH. This work establishes a MOF platform to systematically investigate the structure-property relationship for rationally designing and fabricating robust OER electrocatalysts in the future.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3