Serum assisted PD-L1 aptamer screening for improving its stability

Author:

Zhou Yu1,Zhang Haozhe2,Ding Yujing2,Yu Changyuan2,Li Hao1

Affiliation:

1. Jining Medical University

2. Beijing University of Chemical Technology

Abstract

Abstract

Aptamers have shown potential for diagnosing clinical markers and targeted treatment of diseases. However, their limited stability and short half-life hinder their broader applications. Here, a real sample assisted capture-SELEX strategy is proposed to enhance the aptamer stability, using the selection of specific aptamer towards PD-L1 as an example. Through this developed selection strategy, the aptamer Apt-S1 with higher binding affinity and specificity towards PD-L1 was obtained as compared to the aptamer Apt-A2 which was screened by the traditional capture-SELEX strategy. Moreover, Apt-S1 exhibited a greater PD-L1 binding associated conformational change than Apt-A2, indicating its suitability as a biorecognition element. These findings highlight the potential of Apt-S1 in clinical applications requiring robust and specific targeting of PD-L1. Significantly, Apt-S1 exhibited a lower degradation rate in 10% diluted serum or pure human serum, under the physiological temperature and pH value, compared to Apt-A2. This observation suggested that Apt-S1 possesses higher stability and is more resistant to damage caused by the serum environmental factors, highlighting the superior stability of Apt-S1 over Apt-A2. Furthermore, defatted and deproteinized serum were used to investigate the potential reasons for the improved stability of Apt-S1. The results hinted that the pre-adaptation to nucleases present in serum during the selection process might have contributed to its higher stability. With its improved stability, higher affinity and specificity, Apt-S1 holds great potential for applications in PD-L1 assisted cancer diagnosis and treatment. Meanwhile, the results obtained in this work provide further evidence of the advantages of the real capture-SELEX strategy in improving aptamer stability compared to the traditional strategy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3