Splicing across adipocyte differentiation is highly dynamic and impacted by metabolic phenotype

Author:

Nobrega Marcelo1,Farris Kathryn1ORCID,Andersen Emil2,Donkin Ida2,Versteyhe Soetkin2,Kristiansen Viggo B,Simpson Stephen3ORCID,Barres Romain4ORCID

Affiliation:

1. University of Chicago

2. University of Copenhagen

3. Sydney University

4. Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark

Abstract

Abstract Adipose tissue dysfunction underlies many of the metabolic complications associated with obesity. A better understanding of the gene regulation differences present in metabolically unhealthy adipose tissue can provide insights into the mechanisms underlying adipose tissue dysfunction. Here, we used RNA-seq data collected from a differentiation time course of lean, obese, and obese with type 2 diabetes (T2D) individuals to characterize the role of alterative splicing in adipocyte differentiation and function. We found that splicing was highly dynamic across adipocyte differentiation in all three cohorts, and that the dynamics of splicing were significantly impacted by metabolic phenotype. We also found that there was very little overlap between genes that were differentially spliced in adipocyte differentiation and those that were differentially expressed, positioning alternative splicing as a largely independent gene regulatory mechanism whose impact would be missed when looking at gene expression changes alone. To assess the impact of alternative splicing across adipocyte differentiation on genetic risk for metabolic diseases, we integrated the differential splicing results generated here with genome-wide association study results for body mass index and T2D, and found that variants associated with T2D were enriched in regions that were differentially spliced in early differentiation. These findings provide insight into the role of alternative splicing in adipocyte differentiation and can serve as a resource to guide future variant-to-function studies.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3