Interleukin-4 improved adipose-derived stem cells engraftment via interacting with fibro/adipogenic progenitors in dystrophic mice

Author:

Li Huan1,Lin Jinfu2,Wang Liang1,He Ruojie1,Li Jing1,Chen Menglong3,Zhang Weixi1,Zhang Cheng1ORCID

Affiliation:

1. Sun Yat-sen University First Affiliated Hospital

2. Shantou University Medical College

3. Jinan University First Affiliated Hospital

Abstract

Abstract Adipose-derived stem cells (ADSC) therapy is a promising therapy for dystrophinopathy. Fibro/adipogenic progenitors (FAP) are important in regulating the myogenesis of muscle satellite cells and contribute to muscle fibrosis and adipocyte infiltration. The interleukin-4 (IL4) pathway is found to be a switcher regulating the functions of FAP. The interaction between FAP and engrafted cells has not yet been studied. We used a co-culture system to investigate the possible crosstalk between FAP of dystrophic mice and IL4-overexpressed ADSC (IL4-ADSC) and control ADSC. The systemic transplantation of IL4-ADSC and control ADSC was conducted in dystrophic mice for 16 weeks and motor function and molecular improvements of mice were evaluated. Overexpression of IL4 in ADSC significantly promoted terminal myogenesis in vitro with significant increased expression of Myogenin and MyHC. Through co-culture, we discovered that myoblasts derived from control ADSC promoted adipogenic and fibrogenic differentiation of FAP, but FAP did not significantly affect their myogenesis, while overexpression of IL4 in ADSC inhibited their myotube-dependent promotion of FAP differentiation but promoted FAP to support myogenesis. Dystrophic mice delivered with IL4-ADSC-derived myoblasts had a significant better motor ability, more engrafted cells with dystrophin expression, less muscle fibrosis, and intramuscular adipocytes and macrophage infiltration than mice delivered with control-ADSC-derived myoblasts. Our results revealed the importance of focusing on the crosstalk between engrafted cells and resident FAP in cell therapy and the positive therapeutic effect of IL4 administration combined with ADSC therapy in dystrophic mice.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3