Abstract
We describe an environmentally benign method for the synthesis of porous gold by gelation of a hydrophilic polymer bearing metal-coordination units (thiocarbonyl groups, denoted as HPMC) and Au(III) ions. The gelation was performed by dropwise addition of a dispersed aqueous solution of HPMC to an aqueous solution of Au(III) in a test tube. Concentrations of 15 and 20 wt% HPMC provided elongated and fibrous gels. Scanning electron microscopy and transmission electron microscopy analyses of the fibrous gels revealed the formation of porous gels containing Au nanoparticles. Calcination of the polymer parts in the porous gels at 550 oC for 7 h, followed by self-assembly of the remaining Au nanoparticles, provided the golds with micrometer-size pores. Thermogravimetric analysis of the porous golds indicated that its purity was high (96∼99%). Because the metal-coordination unit has soft basic characteristics, it preferentially coordinate to soft acidic noble metal ions such as platinum group metal ions, Ag(I), and so on. Therefore, this method will be applied to synthesis of various porous metals.