Simultaneous removal of four aflatoxins using magnetic nanobentonite as a green and fast sorbent; Kinetic,termodynamic and isotherm investigation

Author:

Shahinfar Marjan1ORCID,Moghaddas Naser Hafezi1,Lashkaripour Gholam Reza1,Fottovat Amir1

Affiliation:

1. Ferdowsi University of Mashhad

Abstract

Abstract In the study, an adsorptive removal strategy as a straightforward and fast procedure was developed to remove four aflatoxins, including aflatoxin B1 (AF-B1), aflatoxin B2 (AF-B2), aflatoxin G1 (AF-G1), and aflatoxin G2 (AF-G2). A simple and green sorbent consisting of two components (activated nanobentonite and Fe3O4 nanoparticles) was synthesized based on three steps using acidic treatment, ultrasonic procedure, and chemical precipitation method. The sorbent was characterized by several techniques such as FTIR, FESEM, TEM, XRD and VSM to determine the sorbent structure and morphology. An experimental design based on a central composite design was utilized to optimize factors in the removal of AFs. The optimum values of the factors (pH, sorbent amount, shaking rate) was 6.8, 0.076 g and 160 rpm, respectively. Three models, including pseudo-first-order, pseudo-second-order, and intra-particle diffusion models, were used to investigate the kinetics of the removal process. The removal of AFs using magnetic nanobentonite was fitted with the pseudo-second-order model better than other models with an equilibrium time lower than 30 min. the thermodynamic data show that the adsorption of AFs on the sorbent is a spontaneous and feasible process due to negative values of the Gibbs free energy change (ΔG) at different temperatures. Two models (Langmuir and Freundlich models) were chosen to study the isotherm of the removal procedure, indicating that the Freundlich model describes the results better than the Langmuir model. The maximum adsorption capacity of the sorbent for removing AF-B1, AF-B2, AF-G1, and AF-G2 are 357.14, 400.0, 370.37, and 400.0 mg g− 1, respectively. The sorbent reusability was also evaluated to study the sorbent's ability for the removal of AFs, indicating that the sorbent was used for 5 cycles without a significant reduction in the ability to remove AFs.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3