Effects of seasonal and diel variations in thermal stratification on phytoplankton in a regulated river

Author:

Jung Eunsong1ORCID,Joo Gea-Jae1,Kim Hyo Gyeom2,Kim Dong-Kyun3,Kim Hyun-Woo4

Affiliation:

1. Pusan National University

2. The University of Adelaide

3. K-water: Korea Water Resources Corporation

4. Sunchon National University

Abstract

Abstract Thermal stratification in lotic systems has occurred globally and more frequently in recent decades due to global warming and artificial river modification, often with negative ecological effects. However, studies on river stratification have been restricted to rivers below dams or reservoirs affected by their water release and lacked examination of diel stratification and its impact on phytoplankton, in particular. In the present study, we assessed the degree of thermal stratification, its environmental drivers, and the response of water quality and phytoplankton community against stratification in the mid-lower reach of the Nakdong River, whose morphology has been highly modified, including the construction of eight weirs. We implemented vertical temperature profiling at three study sites, both seasonally and diurnally. Then, we calculated three stratification indices: relative water column stability, Schmidt stability, and maximum temperature gradient. Three indices for assessing the degree of stratification showed that most sites experienced diel stratification during summer. Principal component analysis showed that stratification significantly led to seasonal and diel variations in the water environment. Solar radiation and air temperature were positive controllers, while a negative controller (in this case, the river flow rate) existed only for diel variation in the stratification. Higher abundance and surface cell accumulation of cyanobacteria Microcystis were observed at the stratified sites, and the diel variations in its biomass (chlorophyll a) in the surface water were primarily associated with the stratification indices instead of with other temperature and nutrient variables. Overall, the results suggest that the river has summer stratification, which is involved in amplifying cyanobacterial bloom intensity. Without a suppressing factor, summer stratification is expected to be recurrent in the river, and thus mitigating the developed stratification is needed by promptly regulating the river flow.

Publisher

Research Square Platform LLC

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3