Appliances Energy Prediction using Supervised Machine Learning Approach

Author:

Beldar Pankaj Ramanlal1

Affiliation:

1. K. K. Wagh Institute of Engineering Education & Research

Abstract

Abstract This paper presents and discusses data-driven predictive models for the energy use of appliances. Data used include measurements of temperature and humidity sensors from a wireless network, weather from a nearby airport station and recorded energy use of lighting fixtures. The paper discusses data filtering to remove non-predictive parameters and feature ranking. When using all the predictors. From the wireless network, the data from the kitchen, laundry and living room were ranked the highest in importance for the energy prediction. The prediction models with only the weather data, selected the atmospheric pressure (which is correlated to wind speed) as the most relevant weather data variable in the prediction. Therefore, atmospheric pressure may be important to include in energy prediction models and for building performance modelling.

Publisher

Research Square Platform LLC

Reference15 articles.

1. Deep Learning with Long Short-Term Memory Networks for Time Series Prediction;Hong T;IEEE Trans Industr Electron,2018

2. A comprehensive review on energy forecasting methods;Hong T;Renew Sustain Energy Rev,2019

3. Short-term load forecasting with machine learning techniques: a review;Souza RP;Renew Sustain Energy Rev,2019

4. Machine learning approaches for predicting building energy consumption: A review;Nair N;Renew Sustain Energy Rev,2018

5. ADADELTA: An Adaptive Learning Rate Method;Zeiler MD;arXiv Preprint arXiv,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3