Effect of sodium chloride on the enhanced performance of chitosan-based ion actuator

Author:

Cui Zhaoyang,Zhao Xiaoli,Jia Weikun,Ren Yueming,Xu Yan,Lv Yanzhuo

Abstract

Abstract In this work, an actuate membrane and an electrode membrane were prepared by a sol-gel method. And then, they were physically pressed to form a chitosan-based ion actuator (CSIA). Importantly, the effect of sodium chloride on CSIA were investigated, the mechanical properties of CSIA were tested by establishing an output force test platform while testing its porosity. And, the electrochemical performance was tested by electrochemical workstation. At the end, the surface morphology and functional groups were measured by scanning electron microscopy and Infrared spectrogram, respectively. The results indicated that the sodium chloride mass ratio was the best at 0.4 % for CSIA. Its output force of mechanical properties could attain at 2.939 mN and the maximum porosity of 12.98 % at the same time. The specific capacitance of the electrochemical performance was up to 0.07719 F g-1, and the minimum resistance reached 13.48 Ω. From the surface morphology and functional groups, the appropriate doping ratio of Nacl into CSIA was helpful for increasing the transport space of internal ions. The effective internal ion concentration and significantly reduced internal stress provided excellent performances under the appropriate voltage conditions. The doping of inorganic ion sodium chloride improved the internal electron transport efficiency of chitosan ion actuator, and it advanced the mechanical properties of the actuator. Hence the enhancement of Nacl output force in CSIA had a good significance for the development of inorganic salt ion strengthened ion actuator.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3