Affiliation:
1. University of California Davis
2. University of California, Davis, CA, USA
3. University of California, Davis
Abstract
Abstract
Legume nodules are specialized environments on plant roots that are generated and dominated by nitrogen-fixing bacteria. Bacteriophages (phages) in these nodules could potentially provide top-down controls on population size and, therefore, function of nitrogen-fixing symbionts. Here we sought to characterize the diversity and biogeographical patterns of phages that infect nitrogen-fixing Mesorhizobium symbionts in root nodules, leveraging 197 genomes of Mesorhizobium isolated from nodules and 648 nodule metagenomes collected from three species of chickpea plants (Cicer spp.) under different agricultural management practices, spanning eight countries on five continents. We identified 106 phage populations (vOTUs) in Mesorhizobium draft genomes, 37% of which were confirmed as likely prophages. These vOTUs were detected in 64% of the Mesorhizobium-dominated nodule metagenomes and 58% of Mesorhizobium isolates. Per metagenome, 1-16 putative Mesorhizobium vOTUs were detected, with over half of the nodules containing only one such vOTU. The majority of vOTUs were detected exclusively in Ethiopia, followed by India and Morocco, with the lowest richness of putative Mesorhizobium phages in countries that applied industrial Mesorhizobium inoculants to crops. Two vOTUs were identified in five or more countries and in nodules dominated by different strains of Mesorhizobium, suggesting infection of diverse Mesorhizobium hosts and long-term interactions in root nodules. Beta-diversity of these Mesorhizobium phage assemblages was significantly correlated with the dominant Mesorhizobium strain, but not with measured environmental parameters. Our findings indicate that nitrogen-fixing nodules in chickpea plants can contain distinct viral assemblages, with potential impacts on the nodule microbiome that bear further exploration.
Publisher
Research Square Platform LLC