Viruses of nitrogen-fixing Mesorhizobium bacteria in globally distributed chickpea root nodules

Author:

Matsumoto Brandon1,Greenlon Alex1,Perilla-Henao Laura1,Horst Anneliek ter,Geonczy Sara,Cook Douglas2,Emerson Joanne3ORCID,Sieradzki Ella1ORCID

Affiliation:

1. University of California Davis

2. University of California, Davis, CA, USA

3. University of California, Davis

Abstract

Abstract Legume nodules are specialized environments on plant roots that are generated and dominated by nitrogen-fixing bacteria. Bacteriophages (phages) in these nodules could potentially provide top-down controls on population size and, therefore, function of nitrogen-fixing symbionts. Here we sought to characterize the diversity and biogeographical patterns of phages that infect nitrogen-fixing Mesorhizobium symbionts in root nodules, leveraging 197 genomes of Mesorhizobium isolated from nodules and 648 nodule metagenomes collected from three species of chickpea plants (Cicer spp.) under different agricultural management practices, spanning eight countries on five continents. We identified 106 phage populations (vOTUs) in Mesorhizobium draft genomes, 37% of which were confirmed as likely prophages. These vOTUs were detected in 64% of the Mesorhizobium-dominated nodule metagenomes and 58% of Mesorhizobium isolates. Per metagenome, 1-16 putative Mesorhizobium vOTUs were detected, with over half of the nodules containing only one such vOTU. The majority of vOTUs were detected exclusively in Ethiopia, followed by India and Morocco, with the lowest richness of putative Mesorhizobium phages in countries that applied industrial Mesorhizobium inoculants to crops. Two vOTUs were identified in five or more countries and in nodules dominated by different strains of Mesorhizobium, suggesting infection of diverse Mesorhizobium hosts and long-term interactions in root nodules. Beta-diversity of these Mesorhizobium phage assemblages was significantly correlated with the dominant Mesorhizobium strain, but not with measured environmental parameters. Our findings indicate that nitrogen-fixing nodules in chickpea plants can contain distinct viral assemblages, with potential impacts on the nodule microbiome that bear further exploration.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3