Photocatalytic upcycling of polylactic acid to alanine by sulfur vacancy-rich cadmium sulfide

Author:

Yan Ning1ORCID,Wu Yue1,Nguyen Phuc1,Wong Sie Shing1,Zhang Tianyong2

Affiliation:

1. National University of Singapore

2. Tianjing University

Abstract

Abstract Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions. This process is catalyzed by defect-engineered CdS nanocrystals synthesized at room temperature. We observed a distinctive volcano-shaped relationship between sulfur vacancy content in CdS and the corresponding alanine production rate reaching up to 4.95 mmol/g catalyst/h at 70 oC. Ultraviolet-visible (UV-vis) spectra, photocurrent spectra, and Fourier-transform infrared (FT-IR) spectra revealed the crucial role of sulfur vacancies in enhancing active sites on the CdS surface. Sulfur vacancy-rich CdS exhibited high stability, maintaining catalytic performance and morphology over several runs, and effectively converted real-life PLA products. This work not only highlights a facile approach for fabricating defect-engineered catalysts but also presents a sustainable method for upcycling plastic waste into valuable chemicals.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3