Fungicidal activity of human antimicrobial peptides and their synergistic interaction with common antifungals against multidrug resistant Candida auris

Author:

Shaban Siham1,Patel Mrudula1,Ahmad Aijaz2ORCID

Affiliation:

1. University of the Witwatersrand Johannesburg

2. University of the Witwatersrand

Abstract

Abstract Emergence of Candida auris, a multidrug resistant yeast, demonstrates the urgent need for novel antifungal agents. Human antimicrobial peptides (AMP) are naturally occurring molecules with wide spectrum antimicrobial activity, particularly against a variety of fungi. Therefore, this study examined the antifungal activity of seven different human AMPs against C. auris following the CLSI guidelines. The antifungal activity was further assessed using time kill curve and cell viability assays. For combination interaction, effectiveness of these peptides with three antifungals, fluconazole, amphotericin B and caspofungin, was done following standard protocols. To elucidate the antifungal mechanism, the effects of peptides on membrane permeability was investigated using propidium iodide staining method and confocal imaging. Antifungal susceptibility results showed that all the examined peptides possessed fungicidal effect against C. auris at different levels, with human β-Defensin-3 being the most potent antifungal with MIC values ranging from 3.125–12.5 µg/ml. Time kill curves further confirmed the killing effect of all the tested peptides. Viability assay showed a significant decrease in the percentage of viable cells exposed to different inhibitory and fungicidal concentrations of each peptide (p < 0.01). Furthermore, peptides showed mostly synergistic interaction when combined with conventional antifungal drugs, with caspofungin showing 100% synergy when combined with different AMPs. As antifungal mechanism, peptides disrupted the membrane permeability at concentrations that correlated with the inhibition of growth. Overall, the findings of this study point towards the application of the tested peptides as a monotherapy or as a combination therapy with antifungal drugs to treat multidrug resistant C. auris infections.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3