Evaluation of Skin Sympathetic Nervous Activity for Classification of Intracerebral Hemorrhage and Outcome Prediction

Author:

Xing Yantao1,Cheng Hongyi2,Yang Chenxi1,Xiao Zhijun1,Yan Chang1,Chen FeiFei1,Li Jiayi1,Zhang Yike2,Cui Chang2,Li Jianqing1,Liu Chengyu1

Affiliation:

1. Southeast University

2. Jiangsu Province Hospital

Abstract

Abstract Classification and outcome prediction of intracerebral hemorrhage (ICH) is critical for improving the survival rate of patients. Early or delayed neurological deterioration is common in ICH patients, which may lead to changes in the autonomic nervous system (ANS). Therefore, we proposed a new framework for ICH classification and outcome prediction based on skin sympathetic nervous activity (SKNA) signals. A customized measurement device presented in our previous papers was used to collect data. 117 subjects (50 healthy control subjects and 67 ICH patients) were recruited for this study to obtain their five-minute ECG and SKNA signals. We extracted the signal’s time-domain, frequency-domain, and nonlinear features and analyzed their differences between healthy control subjects and ICH patients. Subsequently, we established the ICH classification and outcome evaluation model based on the eXtreme Gradient Boosting (XGBoost). In addition, HRV as an autonomic nerve assessment method was also included as a comparison method in this study. The results showed significant differences in most features of the SKNA signal between healthy control subjects and ICH patients. The ICH patients with good outcomes have a higher change rate and complexity of SKNA signal than those with bad outcomes. In addition, the accuracy of the model for ICH classification and outcome prediction based on the SKNA signal was more than 91% and 83%, respectively. The ICH classification and outcome prediction based on the SKNA signal proved to be a feasible method in this study. Furthermore, the features of change rate and complexity, such as entropy measures, can be used to characterize the difference in SKNA signals of different groups. The method can potentially provide a new tool for rapid classification and outcome prediction of ICH patients.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3