Affiliation:
1. Shahid Beheshti University
2. Geneva University Hospitals: Hopitaux Universitaires Geneve
3. University Hospital Carl Gustav Carus: Universitatsklinikum Carl Gustav Carus
4. Khatam Ol Anbia Hospital
5. BC Cancer Research Centre: British Columbia Cancer Research Centre
6. Tehran University of Medical Sciences
7. The University of British Columbia
Abstract
Abstract
Background
To investigate the use of dynamic radiomics features derived from dual-time-point (DTP-feature) [18F]FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy in lymphoma patients.
Methods
We analysed 126 lesions from 45 lymphoma patients (responding n = 75 and non-responding n = 51) treated with chemotherapy from two different centres. Static and DTP radiomics features were extracted from baseline static PET images and DTP Ki parametric maps. Spearman’s rank correlations were calculated between static and DTP features to identify features with potential additional information. We first employed univariate analysis to determine correlations between individual features, and subsequently utilized multivariate analysis to derive predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multivariate modeling, we utilized both the Minimum Redundancy Maximum Relevance feature selection technique and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets.
Results
Via Spearman’s rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static features demonstrated a strong correlation (AUC = 0.75, p-value = 0.0001, q-value = 0.0007) with therapy response. The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p-value = 0.0001, and q-value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmonization. Use of harmonization plus combining DTP and static features was shown to provide significantly improved predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09 and specificity = 0.88 ± 0.05). All models depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann-Whitney test).
Conclusions
Our results demonstrate significant value in harmonization of radiomics features as well as combining DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.
Publisher
Research Square Platform LLC