Evaluating genomic selection and speed breeding for Fusarium head blight resistance in wheat using stochastic simulations

Author:

Nannuru Vinay Kumar Reddy1ORCID,Dieseth Jon Arne2,Lillemo Morten1,Meuwissen Theo H.E.3

Affiliation:

1. Norwegian University of Life Sciences: Norges miljo- og biovitenskapelige universitet

2. Graminor AS

3. Norwegian University of Life Sciences Faculty of Veterinary and Biosciences: Norges miljo- og biovitenskapelige universitet Veterinaerhogskolen

Abstract

Abstract

Genomic selection-based breeding programs offer significant advantages over conventional phenotypic selection, particularly in accelerating genetic gains in plant breeding, as demonstrated by simulations focused on combating Fusarium head blight (FHB) in wheat. FHB resistance, a crucial trait, is challenging to breed for due to its quantitative inheritance and environmental influence, leading to slow progress in conventional breeding methods. Stochastic simulations in our study compared various breeding schemes, incorporating genomic selection (GS) and combining it with speed breeding, against conventional phenotypic selection. Two datasets were simulated, reflecting real-life genotypic data (MASBASIS) and a simulated wheat breeding program (EXAMPLE). Initially a 20-year burn-in phase using a conventional phenotypic selection method followed by a 20-year advancement phase with three GS-based breeding programs (GSF2F8, GSF8, and SpeedBreeding + GS) were evaluated alongside over a conventional phenotypic selection method. Results consistently showed significant increases in genetic gain with GS-based programs compared to phenotypic selection, irrespective of the selection strategies employed. Among the GS schemes, SpeedBreeding + GS consistently outperformed others, generating the highest genetic gains. This combination effectively minimized generation intervals within the breeding cycle, enhancing efficiency. This study underscores the advantages of genomic selection in accelerating breeding gains for wheat, particularly in combating FHB. By leveraging genomic information and innovative techniques like speed breeding, breeders can efficiently select for desired traits, significantly reducing testing time and costs associated with conventional phenotypic methods.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3