Phosphorus solubilizing bacteria rather than arbuscular mycorrhizal fungi drive maize/faba bean intercropping advantages

Author:

Liu Yalin,Ma Chenyu,Lakshmanan Prakash,Wang Guangzhou,Li Chunjie1

Affiliation:

1. China Agricultural University

Abstract

Abstract

Background and Aims Cereal/legume intercropping can enhance phosphorus (P) uptake compared with monocultures. However, the mechanisms through which arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) contribute to the advantages in biomass and P uptake by cereal/legume intercropping remain elusive. Methods We first analyzed P cycling-related soil microbiome and the associated genes in a long-term low P (LP) and high P (HP) input field experiment. Then we conducted two mesocosm experiments by establishing with two root compartments with the planting patterns of maize monoculture and maize/faba bean intercropping. One compartment of monocultured maize and intercropped faba bean was inoculated with AMF (donor), and the suspensions of LP or HP soils or water was added to the other compartment (receiver) in experiment I to test the legacy effect of soil microbiome conditioned by different field P fertilization, and the following experiment was to detect the effect of specific organic or inorganic PSB on intercropping interactions and advantages. Main results The abundance and structure of total P cycling-related microbe and genes were comparable between LP and HP soils. The addition of bacterial suspensions significantly enhanced shoot biomass but not P content of receiver maize regardless of the AMF presence or not. Single inorganic PSB and the mixed inorganic and organic PSB increased the shoot biomass and P content of receiver maize than single organic PSB regardless of monocultured or intercropped receiver maize. However, only the mixed inorganic and organic PSB established intercropping advantages in shoot biomass and P content of receiver maize. Conclusion In conclusion, the hyphae from faba bean stimulate the cooperation between organic and inorganic PSB to improve the growth and P content of maize in maize/faba bean mixture. Our study emphasized that maintaining the diversity of AMF and PSB communities in soil is important for the overyielding and P uptake by intercropping.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3